
PROGR AMMING/PY THON

Cython

ISBN: 978-1-491-90155-7

US $29.99 CAN $34.99

“	Cython	has	proven	itself	
in	many	foundational	
Python	projects	where	
performance	is	critical.		
In	this	book,	Kurt	Smith	
walks	you	through	
everything	you	need	to	
know	to	tap	into	Cython's	
power	for	your	own	
projects.”

—Robert Bradshaw
Lead Cython Developer

Twitter: @oreillymedia
facebook.com/oreilly

Build software that combines Python’s expressivity with the performance
and control of C (and C++). It’s possible with Cython, the compiler and
hybrid programming language used by foundational packages such as
NumPy, and prominent in projects including Pandas, h5py, and scikits-
learn. In this practical guide, you’ll learn how to use Cython to improve
Python’s performance—up to 3000x—and to wrap C and C++ libraries in
Python with ease.

Author Kurt Smith takes you through Cython’s capabilities, with sample
code and in-depth practice exercises. If you’re just starting with Cython, or
want to go deeper, you’ll learn how this language is an essential part of any
performance-oriented Python programmer’s arsenal.

 ■ Use Cython’s static typing to speed up Python code

 ■ Gain hands-on experience using Cython features to boost your
numeric-heavy Python

 ■ Create new types with Cython—and see how fast object-
oriented programming in Python can be

 ■ Effectively organize Cython code into separate modules and
packages without sacrificing performance

 ■ Use Cython to give Pythonic interfaces to C and C++ libraries

 ■ Optimize code with Cython’s runtime and compile-time
profiling tools

 ■ Use Cython’s prange function to parallelize loops transparently
with OpenMP

Kurt W. Smith discovered Cython’s power during his graduate research in com-
putational plasma physics. Today, he uses Cython extensively in his consulting
work at Enthought, training scientists, engineers, and researchers in Python,
NumPy, Cython, and parallel and high-performance computing.

Kurt W. Smith

Cython
A GUIDE FOR PYTHON PROGRAMMERS

C
ython

Sm
ith

PROGR AMMING/PY THON

Cython

ISBN: 978-1-491-90155-7

US $29.99 CAN $34.99

“	Cython	has	proven	itself	
in	many	foundational	
Python	projects	where	
performance	is	critical.		
In	this	book,	Kurt	Smith	
walks	you	through	
everything	you	need	to	
know	to	tap	into	Cython's	
power	for	your	own	
projects.”

—Robert Bradshaw
Lead Cython Developer

Twitter: @oreillymedia
facebook.com/oreilly

Build software that combines Python’s expressivity with the performance
and control of C (and C++). It’s possible with Cython, the compiler and
hybrid programming language used by foundational packages such as
NumPy, and prominent in projects including Pandas, h5py, and scikits-
learn. In this practical guide, you’ll learn how to use Cython to improve
Python’s performance—up to 3000x—and to wrap C and C++ libraries in
Python with ease.

Author Kurt Smith takes you through Cython’s capabilities, with sample
code and in-depth practice exercises. If you’re just starting with Cython, or
want to go deeper, you’ll learn how this language is an essential part of any
performance-oriented Python programmer’s arsenal.

 ■ Use Cython’s static typing to speed up Python code

 ■ Gain hands-on experience using Cython features to boost your
numeric-heavy Python

 ■ Create new types with Cython—and see how fast object-
oriented programming in Python can be

 ■ Effectively organize Cython code into separate modules and
packages without sacrificing performance

 ■ Use Cython to give Pythonic interfaces to C and C++ libraries

 ■ Optimize code with Cython’s runtime and compile-time
profiling tools

 ■ Use Cython’s prange function to parallelize loops transparently
with OpenMP

Kurt W. Smith discovered Cython’s power during his graduate research in com-
putational plasma physics. Today, he uses Cython extensively in his consulting
work at Enthought, training scientists, engineers, and researchers in Python,
NumPy, Cython, and parallel and high-performance computing.

Kurt W. Smith

Cython
A GUIDE FOR PYTHON PROGRAMMERS

C
ython

Sm
ith

Kurt W. Smith

Cython

Cython
by Kurt W. Smith

Copyright © 2015 Kurt W. Smith, PhD. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Matthew Hacker
Copyeditor: Rachel Monaghan
Proofreader: Rachel Head

Indexer: Ellen Troutman Zaig
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2015: First Edition

Revision History for the First Edition:

2015-01-09: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491901557 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cython, the cover image of a South African
python, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-90155-7

[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491901557

For Ellen, Zélie, Leo, and Hugh—my muses.

An inconvenience is only an adventure wrongly considered; an adventure
is an inconvenience rightly considered.

— GKC

A dead thing can go with the stream, but only a living thing can go against it.

— GKC

Table of Contents

Preface. xi

1. Cython Essentials. 1
Comparing Python, C, and Cython 2

Function Call Overhead 5
Looping 6
Math Operations 6
Stack Versus Heap Allocation 6

Tempering Our Enthusiasm 7
Wrapping C Code with Cython 8
Summary 10

2. Compiling and Running Cython Code. 11
The Cython Compilation Pipeline 12

Installing and Testing Our Setup 13
The Standard Way: Using distutils with cythonize 14

Our distutils Script 15
Compiling with distutils on Mac OS X and Linux 15
Compiling with distutils on Windows 16
Using Our Extension Module 17

Interactive Cython with IPython’s %%cython Magic 19
Compiling On-the-Fly with pyximport 21

Controlling pyximport and Managing Dependencies 22
pyximport Example with External Dependencies 23

Rolling Our Own and Compiling by Hand 24
Using Cython with Other Build Systems 26

CMake and Cython 26
SCons and Cython 26
Make and Cython 26

v

Compiler Directives 28
Summary 29

3. Cython in Depth. 31
Interpreted Versus Compiled Execution 31
Dynamic Versus Static Typing 32
Static Type Declaration with cdef 34

Automatic Type Inference in Cython 36
C Pointers in Cython 37
Mixing Statically and Dynamically Typed Variables 39
Statically Declaring Variables with a Python Type 41
Static Typing for Speed 43
Reference Counting and Static String Types 45

Cython’s Three Kinds of Functions 46
Python Functions in Cython with the def Keyword 46
C Functions in Cython with the cdef Keyword 49
Combining def and cdef Functions with cpdef 50
Functions and Exception Handling 51
Functions and the embedsignature Compiler Directive 53

Type Coercion and Casting 55
Declaring and Using structs, unions, and enums 56
Type Aliasing with ctypedef 59
Cython for Loops and while Loops 61

Guidelines for Efficient Loops 61
Loop Example 62

The Cython Preprocessor 63
Bridging the Python 2 and Python 3 Divide 64

str, unicode, bytes, and All That 66
Summary 67

4. Cython in Practice: N-Body Simulation. 69
Overview of the N-Body Python Code 69
Converting to Cython 71

Python Data Structures and Organization 72
Converting Data Structures to structs 73
Running the Cythonized Version 75

Summary 76

5. Cython and Extension Types. 79
Comparing Python Classes and Extension Types 79
Extension Types in Cython 80
Type Attributes and Access Control 83

vi | Table of Contents

C-Level Initialization and Finalization 85
cdef and cpdef Methods 86
Inheritance and Subclassing 89

Casting and Subclasses 90
Extension Type Objects and None 91

Extension Type Properties in Cython 92
Special Methods Are Even More Special 94

Arithmetic Methods 94
Rich Comparisons 96
Iterator Support 98

Summary 99

6. Organizing Cython Code. 101
Cython Implementation (.pyx) and Declaration (.pxd) Files 102
The cimport Statement 105

Predefined Definition Files 107
Include Files and the include Statement 109
Organizing and Compiling Cython Modules Inside Python Packages 110
Summary 113

7. Wrapping C Libraries with Cython. 115
Declaring External C Code in Cython 115

Cython Does Not Automate Wrapping 117
Declaring External C Functions and typedefs 118
Declaring and Wrapping C structs, unions, and enums 119
Wrapping C Functions 121
Wrapping C structs with Extension Types 122
Constants, Other Modifiers, and Controlling What Cython Generates 125
Error Checking and Raising Exceptions 128
Callbacks 128

Callbacks and Exception Propagation 133
Summary 134

8. Wrapping C++ Libraries with Cython. 135
Simple Example: MT_RNG Class 135

The Wrapper Extension Type 137
Compiling with C++ 138
Using Our Wrapper from Python 139
Overloaded Methods and Functions 140
Operator Overloading 142

C++ Exceptions 144
Stack and Heap Allocation of C++ Instances 145

Table of Contents | vii

Working with C++ Class Hierarchies 146
C++ Templates 147

Templated Functions and Cython’s Fused Types 148
Templated Classes 149
Iterators and Nested Classes 150
Included STL Container Class Declarations 151

Memory Management and Smart Pointers 154
Summary 157

9. Cython Profiling Tools. 159
Cython Runtime Profiling 159
Performance Profiling and Annotations 164
Summary 170

10. Cython, NumPy, and Typed Memoryviews. 171
The Power of the New Buffer Protocol 172

The memoryview Type 173
Typed Memoryviews 176

Typed Memoryview Example 176
C-Level Access to Typed Memoryview Data 177
Trading Safety for Performance 178
Declaring Typed Memoryviews 179
Using Typed Memoryviews 183
Beyond Buffers 187

Wrapping C and C++ Arrays 189
Correct (and Automatic) Memory Management with Cython and C Arrays 189

Summary 192

11. Cython in Practice: Spectral Norm. 193
Overview of the Spectral Norm Python Code 193
Performance Profiling 196
Cythonizing Our Code 197

Adding Static Type Information 198
Using Typed Memoryviews 198

Comparing to the C Implementation 200
Summary 200

12. Parallel Programming with Cython. 201
Thread-Based Parallelism and the Global Interpreter Lock 201

The nogil Function Attribute 202
The with nogil Context Manager 203

Using prange to Parallelize Loops 204

viii | Table of Contents

Using prange 208
prange Options 209

Using prange for Reductions 210
Parallel Programming Pointers and Pitfalls 212
Summary 213

13. Cython in Context. 215
Cython Versus Project X 215

Other Ahead-of-Time Compilers for Python 216
Python Wrapper Projects 217
Just-in-Time Compilers for Python 218

Summary 219

Index. 221

Table of Contents | ix

Preface

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.

— T. Peters
 “The Zen of Python”

Cython: A Guide for Python Programmers covers all you need to know about the epon‐
ymous creole programming language and Python-to-C compiler. If you have heard of
Cython and want to find out more, or if you have been using Cython and want to go
deeper, then this book is for you.

Cython is not another experimental (and all too often minimally maintained) language
x–to–language y compiler project. Neither is it limited to an interesting research project
that never achieves widespread use. Cython is an integral part of foundational projects
in the Python world. It is battle-tested in real-world environments, and it continues to
innovate to provide better performance, greater ease of use, and better coverage of new
Python features.

Who Should Read This Book?
This book is for you if:

• While programming Python, you have thought, “These nested for loops would run
hundreds of times faster in C, but the hassle isn’t worth it.”

• You have considered using PyPy, Numba, or even Julia but want something more
mature and with better support tools.

• You have ever wished Python supported optional static typing to speed up the nu‐
meric expression that takes up 40 percent of your runtime.

xi

• You use NumPy, SciPy, Pandas, a scikit, or some other data-intensive package and
want to go beyond the prepackaged algorithms without compromising
performance.

• You have a tested and optimized C or C++ library that you want to wrap with Python
without learning the arcana of yet another interfacing language.

• You have considered reprogramming that performance-critical part of your Python
application as an extension module but were (rightly) put off by all the fussy details.

Prerequisites
Cython is unique in that it exists between languages. It is a hybrid, a chimera, a saber-
toothed moose lion. Cython is mostly Python and comes from a Python frame of mind,
so this book assumes an intermediate level of Python experience. You should be com‐
fortable with all built-in data types, functions, classes, Python’s object model, modules,
packages, and the more common packages in the standard library. Knowing a bit—or
willingness to learn—about how CPython works under the hood is helpful as well.

Intermediate experience with NumPy is assumed for later chapters.

Cython also speaks C, so at least a beginner’s level of knowledge of the C or C++ language
is necessary. Familiarity with the built-in C numeric types, pointers, C arrays, structs,
unions, enums, and macros is useful. Cython takes a lot of the scariness and danger out
of programming in C, but to go really far, the more C knowledge you have, the better.
The C and C++ wrapping chapters assume an intermediate level of familiarity with these
languages and are self-contained.

Who Should Not Read This Book?
If you are just starting out in Python, you will likely benefit from programming a few
stretch projects before diving in here.

If you have had no exposure to C or C++, then you will likely need to have reference
material handy to help you understand the C- and C++-specific parts. Going through
a C or C++ tutorial and having some familiarity with compiled languages will serve you
well.

Outline
Most of this book is written in a combination tutorial/reference style. Most chapters are
meant to be read more or less in succession and will often build on previously covered
material and concepts:

xii | Preface

Chapter 1, Cython Essentials
The whirlwind tour, the 50,000-foot view: come here to marvel at how effortless
Cython makes speeding up Python and interfacing with C.

Chapter 2, Compiling and Running Cython Code
Where we get you up and running so you can use Cython in your projects.

Chapter 3, Cython in Depth
Where we come to understand how Cython can speed up Python by several orders
of magnitude. We also go into the basic elements of the Cython language, and what
they do.

Chapter 4, Cython in Practice: N-Body Simulation
The first of our practice chapters. We start with a pure-Python program that sim‐
ulates the solar system and use what we have learned so far to speed it up by two
orders of magnitude.

Chapter 5, Cython and Extension Types
Where we learn how to create new Python types with Cython and see just how fast
OOP in Python can be.

Chapter 6, Organizing Cython Code
Where we learn about Cython’s definition files; implementation files; and how to
create, organize, and work with Cython projects, small and large.

Chapter 7, Wrapping C Libraries with Cython
The first wrapping chapter: this covers the basic wrapping concepts and how to
wrap a C library with Cython. Users will never know there is a C library underneath
that beautiful Python interface!

Chapter 8, Wrapping C++ Libraries with Cython
Where we go down the rabbit hole of interfacing with C++, and see how Cython
makes easy things simple and hard things possible.

Chapter 9, Cython Profiling Tools
Where we learn about Cython’s runtime and compile-time profiling tools, and how
to use them to help optimize our Cython code.

Chapter 10, Cython, NumPy, and Typed Memoryviews
Where we learn all about Cython’s support for efficient array-oriented operations,
and how to achieve truly massive performance improvements over Python.

Chapter 11, Cython in Practice: Spectral Norm
Our second practice chapter. This time we focus on optimizing a straightforward
but nontrivial array-centric program, and achieve performance on par with a pure-
C version.

Preface | xiii

Chapter 12, Parallel Programming with Cython
Where we discover Cython’s prange special function, which allows us to easily turn
on thread-based parallelism and bypass the global interpreter lock.

Chapter 13, Cython in Context
Where we compare Cython with other tools in the same space and indulge in a little
prognostication.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material and the full source code for the in-text examples is available for
download at https://github.com/cythonbook/examples.

xiv | Preface

https://github.com/cythonbook/examples

All Cython code in this book is tested with Cython versions 0.20.2 and 0.21. The Cython
language and compiler are fairly stable, and the code in this book will likely work with
several earlier and later versions. That said, there is currently no strong backward com‐
patibility constraint for future Cython releases, so some examples may require updating
in the future.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Cython by Kurt W. Smith, PhD (O’Reilly).
Copyright 2015 Kurt W. Smith, PhD, 978-1-491-90155-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

Preface | xv

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/cython_1e.

To comment or ask technical questions about this book, send email to cython
book@gmail.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The Cython core developers—Robert Bradshaw, Stefan Behnel, and Dag Sverre
Seljebotn—and Pyrex’s main developer, Greg Ewing, deserve the lion’s share of praise
for conceiving of such a unique and useful tool, and for shouldering the years of devel‐
opment effort to make it happen. Without your insight, foresight, and diligence, there
would be no reason for this book.

This work emerged rather than being planned, and is the result of several happy cir‐
cumstances. Thanks to my employer, Enthought, and to the SciPy Conference organ‐
izers for providing a platform where Cython can shine. Thanks to Katy Huff (THW
FTW!) for putting a bug in O’Reilly’s ear; thanks to Mike Loukides for giving this book
a hearing and for shepherding it through the proposal process; thanks to Meghan
Blanchette for the encouragement and flexibility.

Thanks is due to all the technical editors for your time and investment: Robert Bradshaw,
Robert Grant, Jonathan Rocher, Jordan Weaver, and Anthony Scopatz. The manuscript
and examples would be half as good without your perspective and input.

Lastly, thanks to my beautiful and talented wife. Little do you realize how much you’ve
had a hand in this work without writing a single word.

xvi | Preface

http://bit.ly/cython_1e
mailto:cythonbook@gmail.com
mailto:cythonbook@gmail.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Cython Essentials

The test of a first-rate intelligence is the ability to hold two opposed
ideas in mind at the same time and still retain the ability to function.

— F. Scott Fitzgerald

Cython is two closely related things:

• Cython is a programming language that blends Python with the static type system
of C and C++.

• cython is a compiler that translates Cython source code into efficient C or C++
source code. This source can then be compiled into a Python extension module or
a standalone executable.

Cython’s power comes from the way it combines Python and C: it feels like Python while
providing easy access to C. Cython is situated between high-level Python and low-level
C; one might call it a creole programming language.

But Python and C-like languages are so different—why combine them? Precisely because
their differences are complementary. Python is high-level, dynamic, easy to learn, and
flexible. These positives come with a cost, however—because Python is dynamic and
interpreted, it can be several orders of magnitude slower than statically typed compiled
languages.

C, on the other hand, is one of the oldest statically typed compiled languages in wide‐
spread use, so compilers have had nearly half a century to optimize its performance. C
is very low level and very powerful. Unlike Python, it does not have many safeguards
in place and can be difficult to use.

1

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

Both languages are mainstream, but they are typically used in different domains, given
their differences. Cython’s beauty is this: it combines Python’s expressiveness and dy‐
namism with C’s bare-metal performance while still feeling like Python.

With very few exceptions, Python code (both versions 2.x and 3.x) is already valid
Cython code. Cython adds a small number of keywords to the Python language to tap
into C’s type system, allowing the cython compiler to generate efficient C code. If you
already know Python and have a basic understanding of C or C++, you will be able to
quickly learn Cython. You do not have to learn yet another interface language.

We can think of Cython as two projects in one. If compiling Python to C is Cython’s
yin, then interfacing C or C++ with Python is its yang. We can start with Python code
that needs better performance, or we can start with C (or C++) code that needs an
optimized Python interface. To speed up Python code, Cython compiles Python source
with optional static type declarations to achieve massive performance improvements,
depending on the algorithm. To interface C or C++ libraries with Python, we can use
Cython to interface with external code and create optimized wrappers. Both
capabilities—compiling Python and interfacing with external code—are designed to
work together well, and each is an essential part of what makes Cython useful. With
Cython, we can move in either direction, coming from either starting point.

Cython and CPython
Cython is often confused with CPython (mind the P), but the two are very different.
CPython is the name of the standard and most widely used Python implementation.
CPython’s core is written in the C language, and the C in CPython is meant to distinguish
it from Python the language specification and Python implementations in other lan‐
guages, such as Jython (Java), IronPython (.NET), and PyPy (Python implemented in
Python!). CPython provides a C-level interface into the Python language; the interface
is known as the Python/C API. Cython uses this C interface extensively, and therefore
Cython depends on CPython. Cython is not another implementation of Python—it
needs the CPython runtime to run the extension modules it generates.

Let’s see an example.

Comparing Python, C, and Cython
Consider a simple Python function fib that computes the nth Fibonacci number:1

2 | Chapter 1: Cython Essentials

https://github.com/cythonbook/examples
https://www.python.org/
http://docs.python.org/2/c-api/

def fib(n):
 a, b = 0.0, 1.0
 for i in range(n):
 a, b = a + b, a
 return a

As mentioned in the introduction, this Python function is already a valid Cython func‐
tion, and it has identical behavior in both Python and Cython. We will see shortly how
we can add Cython-specific syntax to fib to improve its performance.

The C transliteration of fib follows the Python version closely:

double cfib(int n) {
 int i;
 double a=0.0, b=1.0, tmp;
 for (i=0; i<n; ++i) {
 tmp = a; a = a + b; b = tmp;
 }
 return a;
}

We use doubles in the C version and floats in the Python version to make the com‐
parison direct and remove any issues related to integer overflow for C integral data types.

Imagine blending the types from the C version with the code from the Python version.
The result is a statically typed Cython version:

def fib(int n):
 cdef int i
 cdef double a=0.0, b=1.0
 for i in range(n):
 a, b = a + b, a
 return a

As mentioned previously, Cython understands Python code, so our unmodified Python
fib function is also valid Cython code. To convert the dynamically typed Python version
to the statically typed Cython version, we use the cdef Cython statement to declare the
statically typed C variables i, a, and b. Even for readers who haven’t seen Cython code
before, it should be straightforward to understand what is going on.

What about performance? Table 1-1 has the results.

Table 1-1. Fibonacci timings for different implementations
Version fib(0) [ns] Speedup fib(90) [ns] Speedup Loop body [ns] Speedup

Pure Python 590 1 12,852 1 12,262 1

Pure C 2 295 164 78 162 76

C extension 220 3 386 33 166 74

Cython 90 7 258 50 168 73

Comparing Python, C, and Cython | 3

2. Timings were measured on a four-core 2.4 GHz Intel Core i5 with 8 GB of 1,067 MHz DDR3 memory, running
Mac OS X version 10.7.5.

In Table 1-1,2 the second column measures the runtime for fib(0) and the third column
measures the speedup of fib(0) relative to Python. Because the argument to fib con‐
trols the number of loop iterations, fib(0) does not enter the Fibonacci loop, so its
runtime is a reasonable measure of the language-runtime and function-call overhead.

The fourth and fifth columns measure the runtime and speedup for fib(90), which
executes the loop 90 times. Both the call overhead and the loop execution runtime
contribute to its runtime.

The sixth and seventh columns measure the difference between the fib(90) runtime
and the fib(0) runtime and the relative speedup. This difference is an approximation
of the runtime for the loop alone, removing runtime and call overhead.

Table 1-1 has four rows:
Pure Python

The first row (after the header) measures the performance of the pure-Python ver‐
sion of fib, and as expected, it has the poorest performance by a significant margin
in all categories. In particular, the call overhead for fib(0) is over half a microsec‐
ond on this system. Each loop iteration in fib(90) requires nearly 150 nanosec‐
onds; Python leaves much room for improvement.

Pure C
The second row measures the performance of the pure-C version of fib. In this
version there is no interaction with the Python runtime, so there is minimal call
overhead; this also means it cannot be used from Python. This version provides a
bound for the best performance we can reasonably expect from a simple serial fib
function. The fib(0) value indicates that C function call overhead is minimal (2
nanoseconds) when compared to Python, and the fib(90) runtime (164 nanosec‐
onds) is nearly 80 times faster than Python’s on this particular system.

Hand-written C extension
The third row measures a hand-written C extension module for Python 2. This
extension module requires several dozen lines of C code, most of it boilerplate that
calls the Python/C API. When calling from Python, the extension module must
convert Python objects to C data, compute the Fibonacci number in C, and convert
the result back to a Python object. Its call overhead (the fib(0) column) is corre‐
spondingly larger than that of the pure-C version, which does not have to convert
from and to Python objects. Because it is written in C, it is about three times faster
than pure Python for fib(0). It also gives a nice factor-of-30 speedup for fib(90).

4 | Chapter 1: Cython Essentials

Cython
The last row measures the performance for the Cython version. Like the C exten‐
sion, it is usable from Python, so it must convert Python objects to C data before it
can compute the Fibonacci number, and then convert the result back to Python.
Because of this overhead, it cannot match the pure-C version for fib(0), but, no‐
tably, it has about 2.5 times less overhead than the hand-written C extension. Be‐
cause of this reduced call overhead, it is able to provide a speedup of about a factor
of 50 over pure Python for fib(90).

The takeaways from Table 1-1 are the last two columns: the loop runtime for the pure
C, C extension, and Cython versions are all about 165 nanoseconds on this system, and
the speedups relative to Python are all approximately 75×.

For the C-only parts of an algorithm—provided sufficient static type
information is available—Cython can usually generate code that is as
efficient as a pure-C equivalent.

So, when properly accounting for Python overhead, we see that Cython achieves C-level
performance. Moreover, it does better than the hand-written C extension module on
the Python-to-C conversions.

Cython generates highly optimized code that is frequently faster than
an equivalent hand-written C extension module. It is often able to
generate Python-to-C conversion code that is several factors faster
than naive calls into the Python/C API.

As we will learn in Chapter 3, we can go even further and use Cython to create Python-
like C functions that have no Python overhead. These functions can be called from other
Cython code but cannot be called directly from Python. They allow us to remove ex‐
pensive call overhead for core computations.

What is the reason for Cython’s performance improvements? For this example, the likely
causes are function call overhead, looping, math operations, and stack versus heap
allocations.

Function Call Overhead
The fib(0) runtime is mostly consumed by the time it takes to call a function in the
respective language; the time to run the function’s body is relatively small. We see in
Table 1-1 that Cython generates code that is nearly an order of magnitude faster than
calling a Python function, and more than two times faster than the hand-written

Comparing Python, C, and Cython | 5

extension. Cython accomplishes this by generating highly optimized C code that by‐
passes some of the slower Python/C API calls. We use these API calls in the preceding
C-extension timings.

Looping
Python for loops, as compared to compiled languages, are notoriously slow. One sure‐
fire way to speed up loopy Python code is to find ways to move the Python for and
while loops into compiled code, either by calling built-in functions or by using some‐
thing like Cython to do the transformation for you. The fib(90) column in the table
is running a for loop in each language for 90 iterations, and we see the impact of this
operation on the different version runtimes.

Math Operations
Because Python is dynamically typed and cannot make any type-based optimizations,
an expression like a + b could do anything. We may know that a and b are only ever
going to be floating-point numbers, but Python never makes that assumption. So, at
runtime, Python has to look up the types of both a and b (which, in this instance, are
the same). It must then find the type’s underlying __add__ method (or the equivalent),
and call __add__ with a and b as arguments. Inside this method, the Python floats a
and b have to be unboxed to extract the underlying C doubles, and only then can the
actual addition occur! The result of this addition has to be packaged in an entirely new
Python float and returned as the result.

The C and Cython versions already know that a and b are doubles and can never be
anything else, so adding a and b compiles to just one machine code instruction.

Stack Versus Heap Allocation
At the C level, a dynamic Python object is entirely heap allocated. Python takes great
pains to intelligently manage memory, using memory pools and internalizing frequently
used integers and strings. But the fact remains that creating and destroying objects—
any objects, even scalars—incurs overhead to work with dynamically allocated memory
and Python’s memory subsystem. Because Python float objects are immutable, oper‐
ations using Python floats involve the creation and destruction of heap-allocated ob‐
jects. The Cython version of fib declares all variables to be stack-allocated C doubles.
As a rule, stack allocation is much faster than heap allocation. Moreover, C floating-
point numbers are mutable, meaning that the for loop body is much more efficient in
terms of allocations and memory usage.

6 | Chapter 1: Cython Essentials

It is not surprising that the C and Cython versions are more than an order of magnitude
faster than pure Python, since the Python loop body has to do so much more work per
iteration.

Tempering Our Enthusiasm
It can be exhilarating to see massive performance improvements when we add some
trivial cdef statements to Python code. It is worth noting at the start, however, that not
all Python code will see massive performance improvements when compiled with Cy‐
thon. The preceding fib example is intentionally CPU bound, meaning all the runtime
is spent manipulating a few variables inside CPU registers, and little to no data move‐
ment is required. If this function were, instead, memory bound (e.g., adding the ele‐
ments of two large arrays), I/O bound (e.g., reading a large file from disk), or network
bound (e.g., downloading a file from an FTP server), the performance difference be‐
tween Python, C, and Cython would likely be significantly decreased (for memory-
bound operations) or vanish entirely (for I/O-bound or network-bound operations).

When improving Python’s performance is the goal, the Pareto principle works in our
favor: we can expect that approximately 80 percent of a program’s runtime is due to only
20 percent of the code. A corollary to this principle is that the 20 percent is very difficult
to locate without profiling. But there is no excuse not to profile Python code, given how
simple its built-in profiling tools are to use. Before we use Cython to improve perfor‐
mance, getting profiling data is the first step.

That said, if we determine via profiling that the bottleneck in our program is due to it
being I/O or network bound, then we cannot expect Cython to provide a significant
improvement in performance. It is worth determining the kind of performance bottle‐
neck you have before turning to Cython—it is a powerful tool, but it must be used in
the right way.

Because Cython brings C’s type system to Python, all limitations of C data types become
relevant concerns. Python integer objects silently convert to unlimited-precision
Python long objects when computing large values. C ints or longs are fixed precision,
meaning that they cannot properly represent unlimited-precision integers. Cython has
features to help catch these overflows, but the larger point remains: C data types are
faster than their Python counterparts, but are sometimes not as flexible or general.

Let’s consider Cython’s other main feature: interfacing with external code. Suppose that,
instead of Python code, our starting point is C or C++ code, and that we want to create
Python wrappers for it. Because Cython understands C and C++ declarations and can
interface with external libraries, and because it generates highly optimized code, it is
easy to write efficient wrappers with it.

Tempering Our Enthusiasm | 7

Wrapping C Code with Cython
Continuing with our Fibonacci theme, let’s start with a C implementation and wrap it
in Python using Cython. The interface for our function is in cfib.h:

double cfib(int n);

The Cython wrapper code for cfib.h is fewer than 10 lines:

cdef extern from "cfib.h":
 double cfib(int n)

def fib(n):
 """Returns the nth Fibonacci number."""
 return cfib(n)

The cdef extern block may not be immediately transparent, but certain elements are
easily identified: we provide the cfib.h header filename in the cdef extern from
statement, and we declare the cfib function’s signature in the block’s indented body.
After the cdef extern block, we define a fib Python wrapper function, which calls
cfib and returns its result.

After compiling the preceding Cython code into an extension module named wrap_fib
(we will cover the details of how to compile Cython code in Chapter 2), we can use it
from Python:

>>> from wrap_fib import fib
>>> help(fib)
Help on built-in function fib in module wrap_fib:

fib(...)
 Returns the nth Fibonacci number.

>>> fib(90)
2.880067194370816e+18
>>>

We see that the fib function is a regular Python function inside the wrap_fib extension
module, and calling it with a Python integer does what we expect, calling into the un‐
derlying C function for us and returning a (large) result. Overall, it was just a handful
of lines of Cython code to wrap a simple function. A hand-written wrapper would
require several dozen lines of C code, and detailed knowledge of the Python/C API. The
performance benefits we saw in the previous section apply here as well—Cython’s wrap‐
per code is better optimized than a hand-written version of the same.

This example was intentionally simple. Provided the values are in range, a Python int
converts to a C int without issue, and raises an OverflowError otherwise. Internally
the Python float type stores its value in a C double, so there are no conversion issues
for the cfib return type. Because we are using simple scalar data, Cython can generate

8 | Chapter 1: Cython Essentials

the type conversion code automatically. In future chapters, we will see how Cython helps
us wrap arbitrarily complex data structures, classes, functions, and methods. Because
Cython is a full-fledged language (and not just a domain-specific language for inter‐
facing like other wrapping tools provide), we can use it to do whatever we like before
and after the wrapped function call. Because the Cython language understands Python
and has access to Python’s standard library, we can leverage all of Python’s power and
flexibility.

It should be noted that we can use Cython’s two raisons d'être in one file—speeding up
Python alongside calling external C functions. We can even do both inside the same
function! We will see this in future chapters.

Cython’s Origins
Greg Ewing is the author of Pyrex, Cython’s predecessor. When Pyrex was first released,
its ability to speed up Python code by large factors made it instantaneously popular.
Many projects adopted it and started using it intensively.

Pyrex did not intend to support all constructs in the Python language, but this did not
limit its initial success—it satisfied a pressing need, especially for the scientific Python
community. As is often the case with successful open source projects, other projects
adapted and patched Pyrex to fit their needs. Two forks of Pyrex—one by Stefan Behnel
and the other by William Stein—ultimately combined to form the Cython project, under
the leadership and guidance of Robert Bradshaw and Stefan Behnel.

Since Cython’s inception, William Stein’s Sage project has been the major driver behind
its development. Sage is a GPL-licensed comprehensive mathematics software system
that aims to provide a viable alternative to Magma, Maple, Mathematica, and Matlab.
Sage uses Cython extensively to speed up Python-centric algorithms and to interface
with dozens of C, C++, and Fortran libraries. It is, bar none, the largest extant Cython
project, with hundreds of thousand of lines of Cython code. Without Sage’s support,
Cython would likely not have had the sustained initial support to become what it is
today: a self-standing, widely used, and actively developed open source project.

Since its creation, Cython has had expansive goals, first and foremost being full Python
compatibility. It has also acquired features that are specific to its unique position between
Python and C, making Cython easier to use, more efficient, and more expressive. Some
of these Cython-only features are:

• Features for easier interoperability and conversion between C types and Python
types

• Specialized syntax to ease wrapping and interfacing with C++
• Automatic static type inference for certain code paths
• First-class buffer support with buffer-specific syntax (Chapter 10)

Wrapping C Code with Cython | 9

• Typed memoryviews (Chapter 10)
• Thread-based parallelism with prange (Chapter 12)

The project has in its lifetime received funding and support from the NSF (via Sage),
the University of Washington, Enthought (the author’s employer), and several Google
Summer of Code projects (one of which funded the author’s Cython development in
2009). Besides explicit funding, Cython has benefited from a large and active open
source community, with many contributions of time and effort to develop new features,
to implement them, to report bugs, and to fix them.

Summary
This chapter is meant to whet the appetite. We have seen Cython’s essential features,
distilled to their most basic elements. The rest of this book explains the Cython language
in depth, covers how to compile and run Cython code, describes how to interface with
C and C++, and provides many examples to help you use Cython effectively in your
own projects.

10 | Chapter 1: Cython Essentials

CHAPTER 2

Compiling and Running Cython Code

I was taught that the way of progress was neither swift nor easy.
— M. Curie

It’s not that I’m so smart, it’s just that I stay with problems longer.
— A. Einstein

One of the more significant differences between Python and C or C++ is that Python
is interpreted while C and C++ are compiled. When developing a Python program, we
can immediately run code after making a modification, while C and C++ require an
intervening compilation step. Compiling a large C or C++ code base can take hours or
days. Using Python can allow much more rapid development, leading to a significant
productivity boost.

Like C and C++, Cython requires a compilation step before the source can be run. This
compilation step can be explicit or implicit. Both modes have their uses. One nice feature
of automatically compiling Cython is that it makes working with Cython feel like work‐
ing with pure Python. Whether compiling explicitly or implicitly, because Cython can
be applied selectively to small sections of a Python code base, Cython’s compilation
requirement can be minimized.

This chapter will cover the various ways to compile Cython code so that it can be run
by Python. There are several options:

• Cython code can be compiled and run interactively from an IPython interpreter.
• It can be compiled automatically at import time.
• It can be separately compiled by build tools like Python’s distutils.
• It can be integrated into standard build systems such as make, CMake, or SCons.

11

These options allow us to adapt Cython to particular use cases, from quick interactive
exploration on one end to building for the ages on the other.

It is not necessary to know all the methods to compile Cython code,
so this chapter can be read piecemeal.

In all cases, each method passes Cython code through two compilation stages to generate
a compiled module that Python can import and use. Before we cover the particulars of
each compilation method, it is helpful to understand what is going on in this pipeline.

The Cython Compilation Pipeline
Because the Cython language is a superset of Python, the Python interpreter cannot
import and run it directly. So how do we get from Cython source to valid Python? Via
the Cython compilation pipeline.

The pipeline’s job is to transform Cython code into a Python extension module that can
be imported and used by the Python interpreter. This pipeline can be run either auto‐
matically, without user involvement (making Cython feel much like Python), or ex‐
plicitly by the end user when more control is required.

Cython has a pure-Python mode, which allows the user to bring in
Cython-specific declarations in a way that remains valid Python syn‐
tax. Code developed in pure-Python mode is more verbose, but can
be run directly by the Python interpreter (with no Cython speed
improvement) or compiled by Cython. We do not cover pure-
Python mode here, leaving its treatment to the online documentation.

The pipeline comprises two stages. The first stage is handled by the cython compiler,
which transforms Cython source into optimized and platform-independent C or C++.
The second stage compiles the generated C or C++ source into a shared library with a
standard C or C++ compiler. The resulting shared library is platform dependent. It is a
shared-object file with a .so extension on Linux or Mac OS X, and is a dynamic library
with a .pyd extension on Windows. The flags passed to the C or C++ compiler ensure
this shared library is a full-fledged Python module. We call this compiled module an
extension module, and it can be imported and used as if it were written in pure Python.

Nearly all the complexity of these stages is managed by the tools we will describe in the
rest of this chapter. We rarely have to think about what is going on when the compilation
pipeline is running, but it is good to keep these stages in mind as we go through the
following sections.

12 | Chapter 2: Compiling and Running Cython Code

http://docs.cython.org/src/tutorial/pure.html

The cython compiler is a source-to-source compiler, and the gener‐
ated code is highly optimized. It is not uncommon for Cython-
generated C code to be faster than typical hand-written C. When the
author teaches Cython, students often write C equivalents to Cy‐
thon’s code; the Cython version is nearly always faster, and—for
equivalent algorithms—is never slower. Cython’s generated C code is
also highly portable, supporting all common C compilers and many
Python versions simultaneously.

Installing and Testing Our Setup
Now that we know about the two stages in the compilation pipeline, we need to ensure
that we have both a C (or C++) compiler and the cython compiler installed and working.
Different platforms have different options.

C and C++ compilers
Linux

Refer to the documentation for the distribution’s package manager (for example,
yum for RedHat-based distros, apt-get for Debian-based, etc.) for how to install
GCC and the Python development package (often called python-dev, or some var‐
iant) to acquire the Python headers.

Mac OS X
Install the free OS X developer tools via Xcode; this provides a GCC-like compiler.

Windows
The recommended compiler to use on Windows is Visual Studio, the same version
used to compile the Python runtime. If this is not available, then one alternative is
the Microsoft-provided minimal Visual C++ compiler for compiling extensions for
Python 2.7. Another good alternative is to use the Windows SDK C/C++ compil‐
er. These compilers are the only reliable options for compiling 64-bit extensions.
Another option on Windows for 32-bit extensions is to use MinGW. It is not as
reliable as the Microsoft-provided compilers, but will likely work for simple ex‐
amples. The MinGW compiler is distributed via several prepackaged Python soft‐
ware distributions, mentioned in the next section.

Installing Cython
Likely the easiest way to acquire Cython is via a packaged software distribution, such
as these popular options:

• The Sage Mathematics software system
• Enthought’s Canopy

The Cython Compilation Pipeline | 13

https://developer.apple.com/xcode/downloads/
http://bit.ly/ms_cplusplus_compiler
http://bit.ly/64bit_cython_ext
http://bit.ly/64bit_cython_ext
http://bit.ly/installingonwindows
http://www.sagemath.org/
https://www.enthought.com/products/canopy/

• Anaconda, from Continuum Analytics
• The GPL-licensed and Windows-centric Python(x,y)

Being prepackaged, these options are likely to lag one or two releases behind the most
up-to-date version of Cython.

To use the most recent version of Cython, we can install from source. This requires a
working C or C++ compiler; see the previous section for details. Likely the easiest way
to install from source is via pip, which is commonly available via the listed package
distributions and is now distributed with Python (version 3.4) itself:

$ pip install cython

Another option is to download the Cython source code. From the Cython source di‐
rectory, run:

$ python setup.py install

Once installed—whether via a software distribution or compiled by hand—the cython
compiler will be available from the command line:

$ cython -V
Cython version 0.20.2

Once we have a C compiler and the cython compiler in place, we are ready to follow
along with the distutils and pyximport sections in this chapter.

Additionally, we will need to have IPython installed to use Cython from within IPython.
The packaged distributions include IPython, or we can use pip to install it.

The Standard Way: Using distutils with cythonize
Python’s standard library includes the distutils package for building, packaging, and
distributing Python projects. The distutils package has many features; of interest to
us is its ability to compile C source into an extension module, the second stage in the
pipeline. It manages all platform, architecture, and Python-version details for us, so we
can use one distutils script and run it anywhere to generate our extension module.

What about the first pipeline stage? That is the job of the cythonize command, which
is included with Cython: it takes a Cython source file (and any other necessary options)
and compiles it to a C or C++ source file, and then distutils takes it from there.

By using Python’s distutils module combined with Cython’s cythonize command,
we have explicit control over the compilation pipeline. This approach requires that we
write a small Python script and run it explicitly. It is the most common way for Python
projects to compile and distribute their Cython code to end users.

14 | Chapter 2: Compiling and Running Cython Code

https://store.continuum.io/cshop/anaconda/
https://code.google.com/p/pythonxy/
https://github.com/cython/cython/releases
https://docs.python.org/2/distutils/

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

Our distutils Script
For example, consider the fib.pyx Cython source code from Chapter 1. Our goal is to
use distutils to create a compiled extension module—fib.so on Mac OS X or Linux,
and fib.pyd on Windows.

We control the behavior of distutils through a Python script, typically named setup.py.
A minimal setup.py script for compiling the fib.pyx source file into an extension module
is just a few lines long, two of which are imports:1

from distutils.core import setup
from Cython.Build import cythonize

setup(ext_modules=cythonize('fib.pyx'))

The core of the script is in the setup(cythonize(...)) nested calls. The cythonize
function in its simplest usage converts Cython source to C source code by calling the
cython compiler. We can pass it a single file, a sequence of files, or a glob pattern that
will match Cython files.

The cythonize command returns a list of distutils Extension
objects that the setup function knows how to turn into Python
extension modules. It is designed to make distutils easier to use
for Cython projects.
The cythonize command has several other options; see its doc‐
string for details.

Compiling with distutils on Mac OS X and Linux
These two function calls succinctly demonstrate the two stages in the pipeline:
cythonize calls the cython compiler on the .pyx source file or files, and setup compiles
the generated C or C++ code into a Python extension module.

It is a simple matter to invoke this setup.py script from the command line:

$ python setup.py build_ext --inplace

The build_ext argument is a command instructing distutils to build the Extension
object or objects that the cythonize call created. The optional --inplace flag instructs
distutils to place each extension module next to its respective Cython .pyx source file.

The Standard Way: Using distutils with cythonize | 15

https://github.com/cythonbook/examples

To get the full list of options that the build_ext subcommand sup‐
ports, we can run:

$ python setup.py build_ext --help

Other options allow us to control the preprocessor, include directo‐
ries, link directories, and link libraries.

The output from this command will look different on Mac OS X, Linux, and Windows—
that’s distutils doing its job for us and handling the platform-specific aspects of the
compilation.

For instance, on Mac OS X we will see something like the following, with slight modi‐
fications based on our Python version, OS version, architecture, and so on:

$ python setup.py build_ext -i
Compiling fib.pyx because it changed.
Cythonizing fib.pyx
running build_ext
building 'fib' extension
creating build
creating build/temp.macosx-10.4-x86_64-2.7
gcc -fno-strict-aliasing -fno-common -dynamic -g -O2
 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
 -I/Users/ksmith/Devel/PY64/Python.framework/Versions/2.7/include/python2.7
 -c fib.c -o build/temp.macosx-10.4-x86_64-2.7/fib.o
gcc -bundle -undefined dynamic_lookup
 build/temp.macosx-10.4-x86_64-2.7/fib.o
 -o /Users/ksmith/fib.so

The line Cythonizing fib.pyx is where the call to the cython compiler takes place. If
we have a syntax error or otherwise invalid Cython code in fib.pyx, the cython compiler
will print out a helpful message and stop things at this step. There are two calls to gcc:
the first compiles the generated fib.c code into an object file, and the second links this
object file into a Python extension module, fib.so. If the calls are successful, we should
see in this directory the generated fib.c source file, the compiled extension module
fib.so, and a directory named build with the intermediate build products.

Compiling with distutils on Windows
On Windows we may need to add extra arguments, depending on which compiler we
are using and a few other factors:

C:\Users\ksmith> python setup.py build_ext -i --compiler=mingw32 -DMS_WIN64
Compiling fib.pyx because it changed.
Cythonizing fib.pyx
running build_ext
building 'fib' extension
creating build
creating build\temp.win-amd64-2.7

16 | Chapter 2: Compiling and Running Cython Code

creating build\temp.win-amd64-2.7\Release
C:\Users\ksmith\gcc.exe -mno-cygwin -mdll -O -Wall
 -DMS_WIN64=1 -IC:\Users\ksmith\include -c fib.c
 -o build\temp.win-amd64-2.7\Release\fib.o
writing build\temp.win-amd64-2.7\Release\fib.def
C:\Users\ksmith\gcc.exe -mno-cygwin -shared -s
 build\temp.win-amd64-2.7\Release\fib.o
 build\temp.win-amd64-2.7\Release\fib.def
 -LC:\Users\ksmith\libs -LC:\Users\ksmith\amd64
 -lpython27 -lmsvcr90 -o C:\Users\ksmith\fib.pyd

Here we use the mingw compiler to compile the fib.pyd extension module. Because this
Python interpreter is a 64-bit executable, we add an extra -DMS_WIN64 flag to compile
in 64-bit mode. Otherwise the steps are the same, with different output that is specific
for Windows. The result is the fib.pyd extension module, and usage is identical to the
Mac OS X version.

If using a different Windows compiler, like Visual Studio or the SDK C/C++ compiler,
we should set the compiler flag to msvc and can remove the -DMS_WIN64 flag:

C:\Users\ksmith> python setup.py build_ext -i --compiler=msvc
...

Consult the linked documentation for details.

Using Our Extension Module
Whether on Mac OS X, Linux, or Windows, once we have compiled our extension
module, we can bring up our Python or IPython interpreter and import the fib module:

$ ipython --no-banner

In [1]: import fib

If no ImportError is raised, then the compilation was likely successful.

We can use IPython’s handy introspection features to provide more details about our
extension module:

In [2]: fib?
Type: module
String Form:<module 'fib' from 'fib.so'>
File: /Users/ksmith/fib.so
Docstring: <no docstring>

Putting a single ? after an object instructs IPython to tell us what it knows about the
object.

We can also inspect the fib.fib function we created:

In [3]: fib.fib?
Type: builtin_function_or_method

The Standard Way: Using distutils with cythonize | 17

String Form:<built-in function fib>
Docstring: Returns the nth Fibonacci number.

Notice that the docstring we defined in Cython shows up in our interactive session. Our
fib function is a builtin_function_or_method; that is one way we can tell that this
function is implemented in compiled code rather than in straight Python. It is a full-
fledged Python function, though.

To really test things out, let’s call fib.fib:

In [4]: fib.fib(90)
Out[4]: 2.880067194370816e+18

When using Cython to wrap C and C++ code, which we will cover in detail in Chapters
7 and 8, we must include other source files in the compilation step.

For example, consider the distutils script setup_wrap.py that compiles the cfib.c
wrappers from Chapter 1:

from distutils.core import setup, Extension
from Cython.Build import cythonize

First create an Extension object with the appropriate name and sources.
ext = Extension(name="wrap_fib", sources=["cfib.c", "wrap_fib.pyx"])

Use cythonize on the extension object.
setup(ext_modules=cythonize(ext))

This distutils script requires one extra step to wrap an external library: we create an
Extension object with all C and Cython sources listed and passed in the sources
argument. We then pass this Extension object to cythonize, and cythonize and the
setup command ensure that the cfib.c file is compiled into the resulting extension
module.

If we are provided a precompiled dynamic library libfib.so rather than source code, we
can instruct distutils to link against libfib.so at link time:

18 | Chapter 2: Compiling and Running Cython Code

2. If this is the case, an out-of-date IPython is likely the culprit; please update to a more recent version.

from distutils.core import setup, Extension
from Cython.Build import cythonize

ext = Extension(name="wrap_fib",
 sources=["wrap_fib.pyx"],
 library_dirs=["/path/to/libfib.so"],
 libraries=["fib"])

setup(ext_modules=cythonize(ext))

Here we name only wrap_fib.pyx in the sources argument list, and add a library_dirs
and a libraries argument to our Extension object with the appropriate values. For
more details on all options that the distutils Extension object supports, please see
Python’s official documentation.

Interactive Cython with IPython’s %%cython Magic
Using distutils to compile Cython code gives us full control over every step of the
process. The downside to using distutils is it requires a separate compilation step and
works only with .pyx source files—no interactive use allowed. This is a definite disad‐
vantage, as one of Python’s strengths is its interactive interpreter, which allows us to play
around with code and test how something works before committing it to a source file.
The IPython project has convenient commands that allow us to interactively use Cython
from a live IPython session.

These extra commands are IPython-specific commands called magic commands, and
they start with either a single (%) or double (%%) percent sign. They provide functionality
beyond what the plain Python interpreter supplies. IPython has several magic com‐
mands to allow dynamic compilation of Cython code, which we cover here.

Before we can use these magic Cython commands, we first need to tell IPython to load
them. We do that with the %load_ext metamagic command from the IPython interac‐
tive interpreter, or in an IPython notebook cell:

In [12]: %load_ext cythonmagic

There will be no output if %load_ext is successful, and IPython will issue an error
message if it cannot find the Cython-related magics.2

Now we can use Cython from IPython via the %%cython magic command:

In [13]: %%cython
 ...: def fib(int n):
 ...: cdef int i
 ...: cdef double a=0.0, b=1.0
 ...: for i in range(n):

Interactive Cython with IPython’s %%cython Magic | 19

 ...: a, b = a+b, a
 ...: return a
 ...:

In [14]:

The %%cython magic command allows us to write a block of Cython code directly in the
IPython interpreter. After exiting the block with two returns, IPython will take the
Cython code we defined, paste it into a uniquely named Cython source file, and compile
it into an extension module. If compilation is successful, IPython will import everything
from that module to make the fib function available in the IPython interactive name‐
space. The compilation pipeline is still in effect, but it is all done for us automatically.

We can now call the fib function we just defined:

In [14]: fib(90)
Out[14]: 2.880067194370816e+18

The %%cython magic command recognizes when it has already
compiled an identical code block, in which case it bypasses the com‐
pilation step and loads the precompiled block directly.

There may be a pause after we press return when ending a new Cython code block and
before the next input prompt appears: that is IPython compiling and loading the code
block behind the scenes.

We can always inspect the generated source file if necessary. It is located in the
$IPYTHONDIR/cython directory (~/.ipython/cython on an OS X or *nix system). The
module names are not easily readable because they are formed from the md5 hash of
the Cython source code, but all the contents are there.

We can pass optional arguments to the %%cython magic command. The first set of
options control the cython compilation stage:
-n, --name

Specifies the name of the generated .pyx file

--cplus

Instructs cython to generate C++ source

-a, --annotate
Instructs cython to output an annotated source file (see Chapter 9)

-f, --force
Forces cython to regenerate C or C++ source

The second set of options allows us to control the second pipeline stage:

20 | Chapter 2: Compiling and Running Cython Code

-I, --include
Adds extra directories to search for file inclusions and cimports

-c, --compile-args
Allows inclusion of extra C compiler arguments

--link-args

Allows inclusion of extra link arguments

-L

Adds extra library search directories

-l

Adds extra library names to link against

There are other Cython magic commands that are loaded by %load_ext cythonmagic:
the %%cython_inline command and the %%cython_pyximport command. These are
not as widely used as the %%cython magic command, which is sufficient for quick in‐
teractive use and exploration. The %%cython_inline command—as suggested by its
name—simply compiles and runs Cython code embedded in the current Python
namespace.

Similarly, %%cython_pyximport builds on the pyximport package that comes with Cy‐
thon, so we’ll defer its discussion until the next section.

Compiling On-the-Fly with pyximport
Because Cython is Python-centric, it is natural to want to work with Cython source files
as if they were regular, dynamic, importable Python modules. Enter pyximport: it ret‐
rofits the import statement to recognize .pyx extension modules, sends them through
the compilation pipeline automatically, and then imports the extension module for use
by Python.

Let’s see an example. The pyximport module comes with Cython, and requires just two
statements to get it up and running:

import pyximport
pyximport.install() # .install() called before importing
 # Cython extension modules.

We can use pyximport in an interactive IPython session to compile and load our familiar
fib.pyx example. First, we bring in pyximport itself:

In [1]: import pyximport

In [2]: pyximport.install()
Out[2]: (None, <pyximport.pyximport.PyxImporter at 0x101548a90>)

Compiling On-the-Fly with pyximport | 21

With pyximport installed, we can import fib as if it were fib.py, and pyximport com‐
piles it automatically:

In [3]: import fib

Let’s check the __file__ attribute:

In [4]: fib.__file__
Out[4]: '/Users/ksmith/.pyxbld/lib.macosx-10.4-x86_64-2.7/fib.so'

Everything else checks out, and we can run fib.fib as before:

In [5]: type(fib)
Out[5]: module

In [6]: fib.fib(90)
Out[6]: 2.880067194370816e+18

For simple cases like this example, using pyximport removes the need to write a setup.py
distutils script, and we can treat fib.pyx as if it were a regular Python module. If a
Cython source file is modified, pyximport automatically detects the modification and
will recompile the source file the next time it is imported in a new Python interpreter
session.

Because Cython modules imported via pyximport depend on both the cython compiler
and a properly set up C compiler, it tends not to be used in production environments
where these dependencies are not under our control.

Controlling pyximport and Managing Dependencies
The pyximport package also handles more complex use cases. For instance, what if a
Cython source file depends on other source files, such as C or C++ source or header
files, or other Cython source files? In this case, pyximport needs to recompile the .pyx
file if any of its dependencies have been updated, regardless of whether the .pyx file itself
has changed. To enable this functionality, we add a file with the same base name as
the .pyx source file and with a .pyxdeps extension in the same directory as the Cython
source file. It should contain a listing of files that the .pyx file depends on, one file per
line. These files can be in other directories relative to the directory of the .pyxdeps file.
The entries can also be glob patterns that match multiple files at once. If a .pyxdeps file
exists, pyximport will read it at import time and compare the modification time of each
listed file with the modification time of the .pyx file being imported. If any file that
matches a pattern in the .pyxdeps file is newer than the .pyx file, then pyximport will
recompile on import.

The .pyxdeps file is nice to communicate file dependencies to pyximport, but how do
we tell pyximport to compile and link several source files into one extension module?
That role is filled by a .pyxbld file: its purpose is to customize pyximport for this and
other use cases. Like .pyxdeps, a .pyxbld file has the same base name as its Cython source

22 | Chapter 2: Compiling and Running Cython Code

file and replaces the .pyx extension with .pyxbld. It should be located in the same di‐
rectory as the .pyx file being imported.

What goes inside a .pyxbld file? One or two Python functions, each optional:
make_ext(modname, pyxfilename)

If defined, the make_ext function is called with two string arguments before
compilation. The first argument is the name of the module, and the
second is the name of the .pyx file being compiled. It returns a
distutils.extension.Extension instance, or (equivalently) it can return the re‐
sult of a call to Cython.Build.cythonize. This allows the user to customize the
Extension being used. By adding files to the sources argument when creating an
Extension instance, it instructs pyximport to compile external source files and link
them with the compiled .pyx file when creating the extension module. See the fol‐
lowing example.

make_setup_args

If defined, pyximport calls this function with no arguments to get an extra argument
dictionary to pass to distutils.core.setup. This allows the user to control the
setup arguments passed in, which provides full control over distutils.

pyximport Example with External Dependencies
For example, suppose we want to wrap an external Fibonacci implementation in C. Two
C files are defined, _fib.h and _fib.c. Our fib.pyx file has a cdef extern from

"_fib.h" block and a minimal Python wrapper function to call the C implementation
of the Fibonacci function. We can set up pyximport to work with this configuration by
creating a fib.pyxdeps file that contains one line:

_fib.*

This glob pattern will match both _fib.c and _fib.h, so pyximport will recompile fib.pyx
whenever either of these files changes. We can instruct pyximport to compile and link
_fib.c together with fib.pyx into an extension module by creating a fib.pyxbld file that
defines make_ext:

def make_ext(modname, pyxfilename):
 from distutils.extension import Extension
 return Extension(modname,
 sources=[pyxfilename, '_fib.c'],
 include_dirs = ['.'])

The essential line is the sources=[...] argument. It tells distutils to compile _fib.c
with fib.pyx and link everything together. The include_dirs argument tells distu
tils to look in the current directory for the _fib.h header file.

Compiling On-the-Fly with pyximport | 23

We can import fib.pyx as before, and now it will wrap an external C function. If any of
fib.pyx, _fib.h, or _fib.c is changed, pyximport will detect it and recompile everything
the next time it is used in a new interpreter session.

Rolling Our Own and Compiling by Hand
For the sake of completeness, suppose we want to create an extension module starting
with our fib.pyx source file, without using distutils, IPython’s magic commands, or
pyximport. Here we are getting a backstage look at what’s going on, which can be helpful
if issues arise.

As mentioned, there are two stages in the Cython compilation pipeline: generating C
(or C++) code from Cython source, and compiling the C (or C++) code into an exten‐
sion module.

The first step is easy—we use the cython command:

$ cython fib.pyx

If there are no compilation errors, then cython will print nothing, and we will see a fib.c
file that cython has generated. There are several flags that the cython compiler accepts.
To see them and a brief description of what they do, call cython with no arguments:

$ cython
Cython (http://cython.org) is a compiler for code written in the
Cython language. Cython is based on Pyrex by Greg Ewing.

Usage: cython [options] sourcefile.{pyx,py} ...

Options:
 -V, --version Display version number of cython
 compiler
 -I, --include-dir <directory> Search for include files in
 named directory (multiple
 include directories are
 allowed).
 -o, --output-file <filename> Specify name of generated C file
 -f, --force Compile all source files
 (overrides implied -t)
 -v, --verbose Be verbose, print file names on
 multiple compilation
 -w, --working <directory> Sets the working directory for
 Cython (the directory modules
 are searched from)
 -D, --no-docstrings Strip docstrings from the
 compiled module.
 -a, --annotate Produce a colorized HTML version
 of the source.
 --line-directives Produce #line directives
 pointing to the .pyx source

24 | Chapter 2: Compiling and Running Cython Code

 --cplus Output a C++ rather than C file.
 --embed[=<method_name>] Generate a main() function that
 embeds the Python interpreter.
 -2 Compile based on Python-2 syntax
 and code semantics.
 -3 Compile based on Python-3 syntax
 and code semantics.
 --lenient Change some compile time errors
 to runtime errors to improve
 Python compatibility
 --warning-errors, -Werror Make all warnings into errors
 --warning-extra, -Wextra Enable extra warnings
 -X, --directive <name>=<value>[,<name=value,...]
 Overrides a compiler directive

The preceding example includes only the more common options, most of which we will
cover in this and future chapters. The arguments most commonly used are --cplus to
generate a C++ source file rather than C; -a to generate an annotated HTML version of
the source, useful for performance analysis and covered in depth in Chapter 9; and the
-2 or -3 arguments to control which major version of the Python language to use and
enforce.

To compile our fib.c into a Python extension module, we need to first compile fib.c into
an object file with the proper includes and compilation flags, and then compile fib.o
into a dynamic library with the right linking flags. Fortunately, Python provides the
python-config command-line utility to help with this process. We can use
python-config --cflags to obtain the right compilation flags, and python-config
--ldflags gives us the right linking flags:

$ CFLAGS=$(python-config --cflags)
$ LDFLAGS=$(python-config --ldflags)
$ cython fib.pyx # --> outputs fib.c
$ gcc -c fib.c ${CFLAGS} # outputs fib.o
$ gcc fib.o -o fib.so -shared ${LDFLAGS} # --> outputs fib.so

In the last line, the -shared flag instructs gcc to create a shared library. This is necessary
on Mac OS X; different platforms and compilers may require a different argument or
arguments. It is strongly recommended to use the same compiler that was used to com‐
pile the Python interpreter. The python-config command gives back configuration
flags that are tailored to this compiler/Python version combination.

This is fine for a simple project with just one extension module, but what about larger
projects that have their own build system? The Cython compilation pipeline can work
with these as well.

Rolling Our Own and Compiling by Hand | 25

Using Cython with Other Build Systems
Many build tools know how to take a C or C++ source file and compile it into a Python
extension module. These tools often provide simple commands that handle the details
for us, much like Python’s own distutils package does. The benefit of these build tools
is that they have improved dependency management and other advanced features that
distutils lacks, which can be a tremendous productivity enhancement for large
projects. Cython can be integrated into these build tools if it is not already, and we will
cover a few of them here.

CMake and Cython
CMake is a powerful open source build system created by Kitware, Inc. There are third-
party build commands that can properly detect the cython compiler and fold Cython
code into a standard CMake-compiled project. One version of these commands makes
it possible to use the following interface:

Detects and activates Cython
include(UseCython)

Specifies that Cython source files should generate C++
set_source_files_properties(
 ${CYTHON_CMAKE_EXAMPLE_SOURCE_DIR}/src/file.pyx
 PROPERTIES CYTHON_IS_CXX TRUE)

Adds and compiles Cython source into an extension module
cython_add_module(modname file.pyx cpp_source.cxx)

SCons and Cython
SCons is a full build system written in Python. Cython comes with basic SCons support
in the Tools directory. There we can find cython.py and pyext.py files to extend SCons
with Cython support that can be incorporated into our own SCons-based build system.

Make and Cython
Cython can be incorporated into a make-based build system. To help with portability, it
is recommended to query the Python interpreter itself to determine the right compila‐
tion and linking flags to use. The python-config utility that comes with CPython can
alternatively be used when available. The distutils.sysconfig module can be used to
get configuration parameters for these flags. For instance, to access the include directory
for the Python header file Python.h where the Python/C API is declared, we can use the
following make command:

26 | Chapter 2: Compiling and Running Cython Code

https://github.com/thewtex/cython-cmake-example

INCDIR := $(shell python -c \
 "from distutils import sysconfig; print(sysconfig.get_python_inc())")

To acquire the Python dynamic libraries to link against, we can use:

LIBS := $(shell python -c \
 "from distutils import sysconfig; \
 print(sysconfig.get_config_var('LIBS'))")

Other configuration settings are available via the get_config_var function in the
distutils.sysconfig module.

While these build systems do have dependency-tracking features, be
aware that they may not recognize all Cython import and include
dependencies (Chapter 6), which can result in a dependent module
not being compiled when an imported or included dependency
changes. It may be necessary to force recompilation in some instances.

Cython Standalone Executables
Because Cython works closely with the Python/C API and runtime environment, Cy‐
thon source code is nearly always compiled into a dynamic extension module and im‐
ported by Python code. But the cython compiler does have an option to embed the
Python interpreter inside a main function. This makes it possible to use Cython to create
a standalone executable that can be run directly from the command line.

Consider a simple Python—or Cython—script named irrationals.py:

from math import pi, e

print "e**pi == {:.2f}".format(e**pi)
print "pi**e == {:.2f}".format(pi**e)

Here is its output when run:

$ python irrationals.py
e**pi == 23.14
pi**e == 22.46

To compile this into an executable binary with Cython, we first call cython with the
--embed flag:

$ cython --embed irrationals.py

This generates irrationals.c with a main entry point that embeds a Python interpreter.
We can compile irrationals.c on Mac OS X or Linux using python-config:

$ gcc $(python-config --cflags) $(python-config --ldflags) ./irrationals.c

This produces an executable a.out that we can run directly:

Using Cython with Other Build Systems | 27

$./a.out
e**pi == 23.14
pi**e == 22.46

This simple example provides a recipe for embedding the Python interpreter in a
Cython-generated source file, which may be useful in certain contexts. Remember that
the binary still has a runtime dependency on the Python dynamic library.

Compiler Directives
Cython provides compiler directives to control how it compiles Cython source code.
Directives can be specified in four separate scopes and can be easily turned on or off for
testing and debugging. Not all directives can be set at every scope.

All directives can be set globally for an extension module inside a directive comment.
These comments must appear at the top of an extension module, and must come before
the first line of source code. A directive comment can come after other comments. All
directive comments must start with the comment character followed by cython:, the
directive name, and its value.

For instance, to globally set the nonecheck directive (covered in detail in Chapter 5) to
True for an extension module source.pyx, we can say:

cython: nonecheck=True

We can have more than one directive specified on one line. To turn off bounds checking
for indexing globally (covered in Chapter 10), we can add a boundscheck=False
directive:

cython: nonecheck=True, boundscheck=False

or we can specify them on separate lines:

cython: nonecheck=True
cython: boundscheck=False

Alternatively, we can set directives from the command line using the -X or -—directive
option. Doing so overrides the value for the directive set in a directive comment.

For example, to globally set (and overrride) the nonecheck directive in source.pyx to
False, we can use:

$ cython --directive nonecheck=False source.pyx

Some directives support function- and context-level scope control, via decorators and
context managers, respectively.

28 | Chapter 2: Compiling and Running Cython Code

For instance, to turn off bounds checking and wraparound checking for an entire func‐
tion, we can use the decorator forms of the boundscheck and wraparound directives,
both described in Chapter 10:

cimport cython

@cython.boundscheck(False)
@cython.wraparound(False)
def fast_indexing():
 # ...

If we desire even more local control over these directives, we can use the context-
manager form:

cimport cython

def fast_indexing(a):
 with cython.boundscheck(False), cython.wraparound(False):
 for i in range(len(a)):
 sum += a[i]

These directives are set to False only for the body of the context manager, and revert
to their default True value outside.

Neither the decorator form nor the context-manager form of a directive is affected by
directive comments or command-line directives.

In the following chapters we will point out what directives are available and what they
do. A comprehensive list of directives is also found in the online Cython documentation.

Summary
Now that we have covered the Cython compiler pipeline and various ways to compile
Cython source into an importable Python extension module, we have the necessary
knowledge to work with the examples throughout the rest of this book.

Summary | 29

http://bit.ly/compiler_directives

CHAPTER 3

Cython in Depth

Readability counts.
Special cases aren’t special enough to break the rules.

Although practicality beats purity.
— T. Peters

 “The Zen of Python”

The preceding chapters covered what Cython is, why we would want to use it, and how
we can compile and run Cython code. With that knowledge in hand, it is time to explore
the Cython language in depth.

The first two sections of this chapter cover the deeper reasons why Cython works as
well as it does to speed up Python code. These sections are useful to help form a mental
model of how Cython works, but are not necessary to understand the what of Cython’s
syntax, which comprises the remaining sections.

For those interested in why Cython works, it can be attributed to two differences: run‐
time interpretation versus ahead-of-time compilation, and dynamic versus static typing.

Interpreted Versus Compiled Execution
To better understand how and why Cython improves the performance of Python code,
it is useful to compare how the Python runtime runs Python code with how an operating
system runs compiled C code.

Before being run, Python code is automatically compiled to Python bytecode. Byteco‐
des are fundamental instructions to be executed, or interpreted, by the Python virtual
machine (VM). Because the VM abstracts away all platform-specific details, Python
bytecode can be generated on one platform and run anywhere else. It is up to the VM

31

to translate each high-level bytecode into one or more lower-level operations that can
be executed by the operating system and, ultimately, the CPU. This virtualized design
is common and very flexible, bringing with it many benefits—first among them is not
having to fuss with picky compilers! The primary downside is that the VM is slower
than running natively compiled code.

On the C side of the fence, there is no VM or interpreter, and there are no high-level
bytecodes. C code is translated, or compiled, directly to machine code by a compiler.
This machine code is incorporated into an executable or compiled library. It is tailored
to a specific platform and architecture, it can be run directly by a CPU, and it is as low-
level as it gets.

There is a way to bridge the divide between the bytecode-executing VM and machine
code–executing CPU: the Python interpreter can run compiled C code directly and
transparently to the end user. The C code must be compiled into a specific kind of
dynamic library known as an extension module. These modules are full-fledged Python
modules, but the code inside of them has been precompiled into machine code by a
standard C compiler. When running code in an extension module, the Python VM no
longer interprets high-level bytecodes, but instead runs machine code directly. This
removes the interpreter’s performance overhead while any operation inside this exten‐
sion module is running.

How does Cython fit in? As we saw in Chapter 2, we can use the cython and standard
C compilers to translate Cython source code into a compiled platform-specific extension
module. Whenever Python runs anything inside an extension module, it is running
compiled code, so no interpreter overhead can slow things down.

How big of a difference does interpretation versus direct execution make? It can vary
widely, depending on the Python code in question, but usually we can expect around a
10 to 30 percent speedup from converting Python code into an equivalent extension
module.

Cython gives us this speedup for free, and we are glad to take it. But the real performance
improvements come from replacing Python’s dynamic dispatch with static typing.

Dynamic Versus Static Typing
Another important difference between high-level languages like Python, Ruby, Tcl, and
JavaScript and low-level languages like C, C++, and Java is that the former are dynam‐
ically typed, while the latter are statically typed. Statically typed languages require the
type of a variable to be fixed at compile time. Often we can accomplish this by explicitly
declaring the type of a variable, or, when possible, the compiler can automatically infer
a variable’s type. In either case, in the context where it is used, a variable has that type
and only that type.

32 | Chapter 3: Cython in Depth

1. For an in-depth and quantitative explication of Python’s interpreter and dynamic dispatch performance, see
Brandon Rhodes’s PyCon 2014 talk “The Day of the EXE Is Upon Us.”

What benefits does static typing bring? Besides compile-time type checking, compilers
use static typing to generate fast machine code that is tailored to that specific type.

Dynamically typed languages place no restrictions on a variable’s type: the same variable
can start out as an integer and end up as a string, or a list, or an instance of a custom
Python object, for example. Dynamically typed languages are typically easier to write
because the user does not have to explicitly declare variables’ types, with the tradeoff
that type-related errors are caught at runtime.

When running a Python program, the interpreter spends most of its time figuring out
what low-level operation to perform, and extracting the data to give to this low-level
operation. Given Python’s design and flexibility, the Python interpreter always has to
determine the low-level operation in a completely general way, because a variable can
have any type at any time. This is known as dynamic dispatch, and for many reasons,
fully general dynamic dispatch is slow.1

For example, consider what happens when the Python runtime evaluates a + b:

1. The interpreter inspects the Python object referred to by a for its type, which re‐
quires at least one pointer lookup at the C level.

2. The interpreter asks the type for an implementation of the addition method, which
may require one or more additional pointer lookups and internal function calls.

3. If the method in question is found, the interpreter then has an actual function it
can call, implemented either in Python or in C.

4. The interpreter calls the addition function and passes in a and b as arguments.
5. The addition function extracts the necessary internal data from a and b, which may

require several more pointer lookups and conversions from Python types to C types.
If successful, only then can it perform the actual operation that adds a and b together.

6. The result then must be placed inside a (perhaps new) Python object and returned.
Only then is the operation complete.

The situation for C is very different. Because C is compiled and statically typed, the C
compiler can determine at compile time what low-level operations to perform and what
low-level data to pass as arguments. At runtime, a compiled C program skips nearly all
steps that the Python interpreter must perform. For something like a + b with a and b
both being fundamental numeric types, the compiler generates a handful of machine
code instructions to load the data into registers, add them, and store the result.

Dynamic Versus Static Typing | 33

http://bit.ly/day_of_the_exe

2. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

What is the takeaway? A compiled C program spends nearly all its time calling fast C
functions and performing fundamental operations. Because of the restrictions a stati‐
cally typed language places on its variables, a compiler generates faster, more specialized
instructions that are tailored to its data. Given this efficiency, is it any wonder that a
language like C can be hundreds, or even thousands, of times faster than Python for
certain operations?

The primary reason Cython yields such impressive performance boosts is that it brings
static typing to a dynamic language. Static typing transforms runtime dynamic dispatch
into type-optimized machine code.

Before Cython (and Cython’s predecessor, Pyrex), we could only benefit from static
typing by reimplementing our Python code in C. Cython makes it easy to keep our
Python code as is and tap into C’s static type system. The first and most important
Cython-specific keyword we will learn is cdef, which is our gateway to C’s performance.

Static Type Declaration with cdef
Dynamically typed variables in Cython come for free: we simply assign to a variable to
initialize it and use it as we would in Python:2

a = [x+1 for x in range(12)]
b = a
a[3] = 42.0
assert b[3] == 42.0
a = 13
assert isinstance(b, list)

In Cython, untyped dynamic variables behave exactly like Python variables. The assign‐
ment b = a allows both a and b to access the same list object created on the first line in
the preceding example. Modifying the list via a[3] = 42 modifies the same list refer‐
enced by b, so the assertion holds true. The assignment a = 13 leaves b referring to the
original list object, while a is now referring to a Python integer object. This reassignment
to a changes a’s type, which is perfectly valid Python code.

To statically type variables in Cython, we use the cdef keyword with a type and the
variable name. For example:

cdef int i
cdef int j
cdef float k

Using these statically typed variables looks just like Python (or C) code:

34 | Chapter 3: Cython in Depth

https://github.com/cythonbook/examples

j = 0
i = j
k = 12.0
j = 2 * k
assert i != j

The important difference between dynamic variables and static vari‐
ables is that static variables with C types have C semantics, which
changes the behavior of assignment. It also means these variables
follow C coercion and casting rules.

In the previous example, i = j copies the integer data at j to the memory location
reserved for i. This means that i and j refer to independent entities, and can evolve
separately.

As with C, we can declare several variables of the same type at once:

cdef int i, j, k
cdef float price, margin

Also, we can provide an optional initial value:

cdef int i = 0
cdef long int j = 0, k = 0
cdef float price = 0.0, margin = 1.0

Inside a function, cdef statements are indented and the static variables declared are
local to that function. All of these are valid uses of cdef to declare local variables in a
function integrate:

def integrate(a, b, f):
 cdef int i
 cdef int N=2000
 cdef float dx, s=0.0
 dx = (b-a)/N
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

An equivalent way to declare multiple variables is by means of a cdef block, which
groups the declarations in an indented region:

def integrate(a, b, f):
 cdef:
 int i
 int N=2000
 float dx, s=0.0
 # ...

This groups long lists of cdef declarations nicely, and we will use both forms throughout
this book.

Static Type Declaration with cdef | 35

What About static and const?
The C static keyword is used to declare a variable whose lifetime
extends to the entire lifetime of a program. It is not a valid Cython
keyword, so we cannot declare C static variables in Cython. The C
const keyword declares an unmodifiable identifier. Cython sup‐
ports the const keyword, but it is not very useful in the context of
this chapter. If we try to declare N as const, for example, we will get
a compilation error (“Error compiling Cython file […] Assignment
to const N”). We will see in Chapters 7 and 8 where Cython’s const
support becomes useful.

We can declare any kind of variable that C supports. Table 3-1 gives examples using
cdef for the more common C types.

Table 3-1. Various cdef declarations
C type Cython cdef statement

Pointers cdef int *p

cdef void **buf

Stack-allocated C arrays cdef int arr[10]

cdef double points[20][30]

typedefed aliased types cdef size_t len

Compound types (structs and unions) cdef tm time_struct

cdef int_short_union_t hi_lo_bytes

Function pointers cdef void (*f)(int, double)

Cython supports the full range of C declarations, even the cryptic arrays-of-pointers-
to-function-pointers-that-return-function-pointers tongue twisters. For example, to
declare a function that takes a function pointer as its only argument and returns another
function pointer, we could say:

cdef int (*signal(int (*f)(int))(int)

It is not immediately apparent how to make use of the signal function in Cython, but
we will see later how C function pointers enter the picture with callbacks. Cython does
not limit the C-level types that we can use, which is especially useful when we are wrap‐
ping external C libraries.

Automatic Type Inference in Cython
Static typing with cdef is not the only way to statically type variables in Cython. Cython
also performs automatic type inference for untyped variables in function and method
bodies. By default, Cython infers variable types only when doing so cannot change the
semantics of the code.

36 | Chapter 3: Cython in Depth

Consider the following simple function:

def automatic_inference():
 i = 1
 d = 2.0
 c = 3+4j
 r = i * d + c
 return r

In this example, Cython types the literals 1 and 3+4j and the variables i, c, and r as
general Python objects. Even though these types have obvious corresponding C types,
Cython conservatively assumes that the integer i may not be representable as a C
long, so types it as a Python object with Python semantics. Automatic inference is able
to infer that the 2.0 literal, and hence the variable d, are C doubles and proceeds ac‐
cordingly. To the end user, it is as if d is a regular Python object, but Cython treats it as
a C double for performance.

By means of the infer_types compiler directive (see “Compiler Directives” on page
28), we can give Cython more leeway to infer types in cases that may possibly change
semantics—for example, when integer addition may result in overflow.

To enable type inference for a function, we can use the decorator form of infer_types:

cimport cython

@cython.infer_types(True)
def more_inference():
 i = 1
 d = 2.0
 c = 3+4j
 r = i * d + c
 return r

Because infer_types is enabled for more_inference, the variable i is typed as a C long;
d is a double, as before, and both c and r are C-level complex variables (more on complex
variables in Table 3-2 and “Complex types” on page 41). When enabling infer_types,
we are taking responsibility to ensure that integer operations do not overflow and that
semantics do not change from the untyped version. The infer_types directive can be
enabled at function scope or globally, making it easy to test whether it changes the results
of the code base, and whether it makes a difference in performance.

C Pointers in Cython
As we saw in Table 3-1, declaring C pointers in Cython uses C syntax and semantics:

cdef int *p_int
cdef float** pp_float = NULL

Static Type Declaration with cdef | 37

As with C, the asterisk can be declared adjacent to the type or to the variable, although
the pointerness is associated with the variable, not the type.

This means that to declare multiple pointers on a single line we have to use an asterisk
with each variable declared, like so:

cdef int *a, *b

If we instead use:

cdef int *a, b

this declares an integer pointer a, and a nonpointer integer b! In recent versions, Cython
issues a warning when compiling error-prone declarations such as these.

Dereferencing pointers in Cython is different than in C. Because the Python language
already uses the *args and **kwargs syntax to allow arbitrary positional and keyword
arguments and to support function argument unpacking, Cython does not support the
*a syntax to dereference a C pointer. Instead, we index into the pointer at location 0 to
dereference a pointer in Cython. This syntax also works to dereference a pointer in C,
although that’s rare.

For example, suppose we have a golden_ratio C double and a p_double C pointer:

cdef double golden_ratio
cdef double *p_double

We can assign golden_ratio’s address to p_double using the address-of operator, &:

p_double = &golden_ratio

We can now assign to golden_ratio through p_double using our indexing-at-zero-to-
dereference syntax:

p_double[0] = 1.618
print golden_ratio
=> 1.618

And we can access p_double’s referent the same way:

print p_double[0]
=> 1.618

Alternatively, we can use the cython.operator.dereference function-like operator to
dereference a pointer. We access this operator by cimporting from the special cython
namespace, which is covered in detail in Chapter 6:

from cython cimport operator
print operator.dereference(p_double)
=> 1.618

This form is not frequently used.

38 | Chapter 3: Cython in Depth

Another difference between Cython and C arises when we are using pointers to
structs. (We will cover Cython’s struct support in depth later in this chapter.) In C, if
p_st is a pointer to a struct typedef:

st_t *p_st = make_struct();

then to access a struct member a inside p_st, we use arrow syntax:

int a_doubled = p_st->a + p_st->a;

Cython, however, uses dot access whether we have a nonpointer struct variable or a
pointer to a struct:

cdef st_t *p_st = make_struct()
cdef int a_doubled = p_st.a + p_st.a

Wherever we use the arrow operator in C, we use the dot operator in Cython, and
Cython will generate the proper C-level code.

Mixing Statically and Dynamically Typed Variables
Cython allows assignments between statically and dynamically typed variables. This
fluid blending of static and dynamic is a powerful feature that we will use in several
instances: it allows us to use dynamic Python objects for the majority of our code base,
and easily convert them into fast, statically typed analogues for the performance-critical
sections.

To illustrate, say we have several (static) C ints we want to group into a (dynamic)
Python tuple. The C code to create and initialize this tuple using the Python/C API is
straightforward but tedious, requiring dozens of lines of code, with a significant amount
of error checking. In Cython, the obvious way to do it just works:

 cdef int a, b, c
 # ...Calculations using a, b, and c...
 tuple_of_ints = (a, b, c)

This code is trivial, boring even. The point to emphasize here is that a, b, and c are
statically typed integers, and Cython allows the creation of a dynamically typed Python
tuple literal with them. We can then assign that tuple to the dynamically typed
tuple_of_ints variable. The simplicity of this example is part of Cython’s power and
beauty: we can just create a tuple of C ints in the obvious way without further thought.
We want conceptually simple things like this to be simple, and that is what Cython
provides.

This example works because there is an obvious correspondence between C ints and
Python ints, so Python can transform things automatically for us. This example would
not work as is if a, b, and c were, for example, C pointers. In that case we would have
to dereference them before putting them into the tuple, or use another strategy.

Static Type Declaration with cdef | 39

Table 3-2 gives the full list of correspondences between built-in Python types and C or
C++ types.

Table 3-2. Type correspondence between built-in Python types and C or C++ types
Python type(s) C type(s)

bool bint

int

long

[unsigned] char

[unsigned] short

[unsigned] int

[unsigned] long

[unsigned] long long

float float

double

long double

complex float complex

double complex

bytes

str

unicode

char *

std::string (C++)

dict struct

There are several points worth mentioning regarding Table 3-2, which we’ll cover next.

The bint type

The bint Boolean integer type is an int at the C level and is converted to and from a
Python bool. It has the standard C interpretation of truthiness: zero is False, and non‐
zero is True.

Integral type conversions and overflow

In Python 2, a Python int is stored as a C long, and a Python long has unlimited
precision. In Python 3, all int objects are unlimited precision.

When converting integral types from Python to C, Cython generates code that checks
for overflow. If the C type cannot represent the Python integer, a runtime
OverflowError is raised.

There are related Boolean overflowcheck and overflowcheck.fold compiler direc‐
tives (see “Compiler Directives” on page 28) that will catch overflow errors
when we are working with C integers. If overflowcheck is set to True, Cython will raise
an OverflowError for overflowing C integer arithmetic operations. The
overflowcheck.fold directive, when set, may help remove some overhead when
overflowcheck is enabled.

40 | Chapter 3: Cython in Depth

Floating-point type conversions

A Python float is stored as a C double. Converting a Python float to a C float may
truncate to 0.0 or positive or negative infinity, according to IEEE 754 conversion rules.

Complex types

The Python complex type is stored as a C struct of two doubles.

Cython has float complex and double complex C-level types, which correspond to
the Python complex type. The C types have the same interface as the Python complex
type, but use efficient C-level operations. This includes the real and imag attributes to
access the real and imaginary components, the conjugate method to create the complex
conjugate of a number, and efficient operations for addition, subtraction, multiplication,
and division.

The C-level complex type is compatible with the C99 _Complex type or the C++
std::complex templated class.

bytes type

The Python bytes type converts to and from a char * or std::string automatically.

str and unicode types

The c_string_type and c_string_encoding compiler directives need to be set (see
“str, unicode, bytes, and All That” on page 66) to allow str or unicode types to convert
to and from a char * or std::string.

Statically Declaring Variables with a Python Type
Until now, we have used cdef to statically declare variables with a C type. It is also
possible to use cdef to statically declare variables with a Python type. We can do this for
the built-in types like list, tuple, and dict; extension types like NumPy arrays; and
many others.

Not all Python types can be statically declared: they must be implemented in C and
Cython must have access to the declaration. The built-in Python types already satisfy
these requirements, and declaring them is straightforward. For example:

cdef list particles, modified_particles
cdef dict names_from_particles
cdef str pname
cdef set unique_particles

The variables in this example are full Python objects. Under the hood, Cython declares
them as C pointers to some built-in Python struct type. They can be used like ordinary
Python variables, but are constrained to their declared type:

Static Type Declaration with cdef | 41

...initialize names_from_particles...
particles = list(names_from_particles.keys())

Dynamic variables can be initialized from statically declared Python types:

other_particles = particles
del other_particles[0]

Here, deleting the 0th element via other_particles will delete the 0th element of
particles as well, since they are referring to the same list.

One difference between other_particles and particles is that particles can only
ever refer to Python list objects, while other_particles can refer to any Python type.
Cython will enforce the constraint on particles at compile time and at runtime.

In cases where Python built-in types like int or float have the same
name as a C type, the C type takes precedence. This is almost al‐
ways what we want.

When we are adding, subtracting, or multiplying scalars, the operations have Python
semantics (including automatic Python long coercion for large values) when the
operands are dynamically typed Python objects. They have C semantics (i.e., the result
may overflow for limited-precision integer types) when the operands are statically typed
C variables.

Division and modulus (i.e., computing the remainder) deserve special mention. C and
Python have markedly different behavior when computing the modulus with signed
integer operands: C rounds toward zero, while Python rounds toward infinity. For ex‐
ample, -1 % 5 evaluates to 4 with Python semantics; with C semantics, however, it
evaluates to -1. When dividing two integers, Python always checks the denominator
and raises a ZeroDivisionError when it is zero, while C has no such safeguards in place.

Following the principle of least astonishment, Cython uses Python semantics by default
for division and modulus even when the operands are statically typed C scalars. To
obtain C semantics, we can use the cdivision compiler directive (see “Compiler Di‐
rectives” on page 28), either at the global module level, or in a directive comment:

cython: cdivision=True

or at the function level with a decorator:

cimport cython

@cython.cdivision(True)
def divides(int a, int b):
 return a / b

42 | Chapter 3: Cython in Depth

or within a function with a context manager:

cimport cython

def remainder(int a, int b):
 with cython.cdivision(True):
 return a % b

Note that when we are dividing C integers with cdivision(True), if the denominator
is zero, the result may lead to undefined behavior (i.e., anything from hard crashes to
corrupted data).

Cython also has the cdivision_warnings compiler directive (which has a default value
of False). When cdivision_warnings is True, Cython emits a runtime warning when‐
ever division (or modulo) is performed with negative operands.

Static Typing for Speed
It may seem odd at first that Cython allows static declaration of variables with built-in
Python types. Why not just use Python’s dynamic typing as usual? The answer points
to a general Cython principle: the more static type information we provide, the better
Cython can optimize the result. As always, there are exceptions to this rule, but it is more
often true than not. For instance, this line of code simply appends a Particle object to
a dynamic dynamic_particles variable:

 dynamic_particles = make_particles(...)
 # ...
 dynamic_particles.append(Particle())
 # ...

The cython compiler will generate code that can handle any Python object, and tests at
runtime if dynamic_particles is a list. If it is not, as long as it has an append method
that takes an argument, this code will run. Under the hood, the generated code first
looks up the append attribute on the dynamic_particles object (using
PyObject_GetAttr), and then calls that method using the completely general
PyObject_Call Python/C API function. This essentially emulates what the Python in‐
terpreter would do when running equivalent Python bytecode.

Suppose we statically declare a static_particles Python list and use it instead:

 cdef list static_particles = make_particles(...)
 # ...
 static_particles.append(Particle())
 # ...

Now Cython can generate specialized code that directly calls either the
PyList_SET_ITEM or the PyList_Append function from the C API. This is what
PyObject_Call in the previous example ends up calling anyway, but static typing allows
Cython to remove dynamic dispatch on static_particles.

Static Type Declaration with cdef | 43

Cython currently supports several built-in statically declarable Python types, including:

• type, object
• bool

• complex

• basestring, str, unicode, bytes, bytearray
• list, tuple, dict, set, frozenset
• array

• slice

• date, time, datetime, timedelta, tzinfo

More types may be supported in future releases.

Python types that have direct C counterparts—like int, long, and float—are not in‐
cluded in the preceding list. It turns out that it is not straightforward to statically declare
and use PyIntObjects, PyLongObjects, or PyFloatObjects in Cython; fortunately, the
need to do so is rare. We just declare regular C ints, longs, floats, and doubles and let
Cython do the automatic conversion to and from Python for us.

A Python float corresponds to a C double. For this reason, C dou
bles are preferred whenever conversions to and from Python are used
to ensure no clipping of values or loss of precision.
In Python 2, a Python int (more precisely, a PyIntObject at the C
level) stores its value internally as a C long. So a C long is the pre‐
ferred integral data type to ensure maximal compatibility with
Python.

Python also has a PyLongObject at the C level to represent arbitrarily sized integers. In
Python 2, these are exposed as the long type, and if an operation with PyIntObject
overflows, a PyLongObject results.

In Python 3, at the C level, all integers are PyLongObjects.

Cython properly converts between C integral types and these Python integer types in a
language-agnostic way, and raises an OverflowError when a conversion is not possible.

When we work with Python objects in Cython, whether statically declared or dynamic,
Cython still manages all aspects of the object for us, which includes the tedium of ref‐
erence counting.

44 | Chapter 3: Cython in Depth

Reference Counting and Static String Types
One of Python’s major features is automatic memory management. CPython implements
this via straightforward reference counting, with an automatic garbage collector that
runs periodically to clean up unreachable reference cycles.

Cython handles all reference counting for us, ensuring a Python object (whether stati‐
cally typed or dynamic) is finalized when its reference count reaches zero.

CPython’s automatic memory management has certain implications when mixing static
and dynamic variables in Cython. Say, for instance, we have two Python bytes objects
b1 and b2, and we want to extract the underlying char pointer after adding them
together:

b1 = b"All men are mortal."
b2 = b"Socrates is a man."
cdef char *buf = b1 + b2

The b1 + b2 expression is a temporary Python bytes object, and the assignment at‐
tempts to extract that temporary object’s char pointer using Cython’s automatic con‐
version rules. Because the result of the addition is a temporary object, the preceding
example cannot work—the temporary result of the addition is deleted immediately after
it is created, so the char buffer cannot refer to a valid Python object. Fortunately, Cython
is able to catch the error and issue a compilation error.

Once understood, the right way to accomplish what we want is straightforward—just
use a temporary Python variable, either dynamically typed:

tmp = s1 + s2
cdef char *buf = tmp

or statically typed:

cdef bytes tmp = s1 + s2
cdef char *buf = tmp

These cases are not common. It is an issue here only because a C-level object is refer‐
ring to data that is managed by a Python object. Because the Python object owns the
underlying string, the C char * buffer has no way to tell Python that it has another
(non-Python) reference. We have to create a temporary bytes object so that Python
does not delete the string data, and we must ensure that the temporary object is main‐
tained as long as the C char * buffer is required. The other C types listed in Table 3-2
are all value types, not pointer types. For these types, the Python data is copied during
assignment (C semantics), allowing the C variable to evolve separately from the Python
object used to initialize it.

Just as Cython understands both dynamic Python variables and static C variables, it
also understands functions in both languages, and allows us to use either kind.

Static Type Declaration with cdef | 45

Cython’s Three Kinds of Functions
Much of what we have learned about dynamic and static variables applies to functions
as well. Python and C functions have some common attributes: they both (usually) have
a name, take zero or more arguments, and can return new values or objects when called.
But Python functions are more flexible and powerful. Python functions are first-class
citizens, meaning that they are objects with state and behavior. This abstraction is very
useful.

A Python function can be

• created both at import time and dynamically at runtime;
• created anonymously with the lambda keyword;
• defined inside another function (or other nested scope);
• returned from other functions;
• passed as an argument to other functions;
• called with positional or keyword arguments;
• defined with default values.

C functions have minimal call overhead, making them orders of magnitude faster than
Python functions. A C function

• can be passed as an argument to other functions (but doing so is much more cum‐
bersome than in Python);

• cannot be defined inside another function;
• has a statically assigned name that is not modifiable;
• takes arguments only by position;
• does not support default values for parameters.

All of the power and flexibility of Python functions comes at a cost: Python functions
are several orders of magnitude slower than C functions—even functions that take no
arguments.

Cython supports both Python and C functions and allows them to call each other in a
natural and straightforward way, all in the same source file.

Python Functions in Cython with the def Keyword
Cython supports regular Python functions defined with the def keyword, and they work
as we would expect. For example, consider a recursive py_fact function that recursively
computes the factorial of its argument:

46 | Chapter 3: Cython in Depth

def py_fact(n):
 """Computes n!"""
 if n <= 1:
 return 1
 return n * py_fact(n - 1)

This simple Python function is valid Cython code. In Cython, the n argument is a dy‐
namic Python variable, and py_fact must be passed a Python object when called.
py_fact is used the same way regardless of whether it is defined in pure Python or
defined in Cython and imported from an extension module.

We can compile the py_fact example using any of the methods described in Chap‐
ter 2. If we put the py_fact function in a file named fact.pyx, we can easily compile it
on the fly using pyximport from an interactive prompt (here, IPython):

In [1]: import pyximport

In [2]: pyximport.install()
Out[2]: (None, <pyximport.pyximport.PyxImporter at 0x101c65690>)

In [3]: import fact

We can now access and use fact.py_fact:

In [4]: fact.py_fact?
Type: builtin_function_or_method
String Form:<built-in function py_fact>
Docstring: Computes n!

In [5]: fact.py_fact(20)
Out[5]: 2432902008176640000

Let’s define a pure-Python version of py_fact in the interpreter for comparison:

In [7]: def interpreted_fact(n):
 ...: """Computes n!"""
 ...: if n <= 1:
 ...: return 1
 ...: return n * interpreted_fact(n - 1)
 ...:

We can compare their runtimes with the handy IPython %timeit magic:

In [8]: %timeit interpreted_fact(20)
100000 loops, best of 3: 4.24 µs per loop

In [9]: %timeit fact.py_fact(20)
1000000 loops, best of 3: 1.78 µs per loop

The py_fact function runs approximately two times faster with Cython for small input
values on this system, although the speedup depends on a number of factors. The source
of the speedup is the removal of interpretation overhead and the reduced function call
overhead in Cython.

Cython’s Three Kinds of Functions | 47

With respect to usage, interpreted_fact and the Cython-compiled py_fact are iden‐
tical. With respect to implementation, these two functions have some important differ‐
ences. The Python version has type function, while the Cython version has type
builtin_function_or_method. The Python version has several attributes available to
it—such as __name__—that are modifiable, while the Cython version is not modifiable.
The Python version, when called, executes bytecodes with the Python interpreter, while
the Cython version runs compiled C code that calls into the Python/C API, bypassing
bytecode interpretation entirely.

Factorials grow very quickly. One nice feature of Python integers is that they can rep‐
resent arbitrarily large values (memory constraints), and can therefore represent values
that C integral types cannot. These large integers are very convenient, but that conve‐
nience comes at the cost of performance.

We can tell Cython to type n as a C integral type and possibly gain a performance
improvement, with the understanding that we are now working with limited-precision
integers that may overflow (more on handling overflow later).

Let’s define a new function, typed_fact, inside our fact.pyx file:

def typed_fact(long n):
 """Computes n!"""
 if n <= 1:
 return 1
 return n * typed_fact(n - 1)

Here, we statically type n. Because n is a function argument, we omit the cdef keyword.
When we call typed_fact from Python, Cython will convert the Python object argu‐
ment to a C long, raising an appropriate exception (TypeError or OverflowError) if it
cannot.

When defining any function in Cython, we may mix dynamically typed Python object
arguments with statically typed arguments. Cython allows statically typed arguments
to have default values, and statically typed arguments can be passed positionally or by
keyword.

In this case, statically typing typed_fact’s argument does not improve performance
over py_fact. Because typed_fact is a Python function, its return value is a Python
integer object, not a statically typed C long. When computing
n * typed_fact(n - 1), Cython has to generate lots of code to extract the underlying
C long from the Python integer returned from typed_fact, multiply it by the statically
typed n, and pack that result into a new Python integer, which is then returned. All this
packing and unpacking leads to essentially the same code paths taken by the py_fact
function we saw earlier.

So how do we improve performance? We could translate this into a loop rather than a
recursive function, but we will hold off on that for now. What we would like to do is tell

48 | Chapter 3: Cython in Depth

Cython, “Here is a C long; compute its factorial without creating any Python integers,
and I’ll make a Python integer out of that result to return.” Essentially, we want a pure
C function to do all the hard work using only C function calls and statically typed C
data. We can then trivially convert the result to a Python integer and return that. This
is a perfect fit for Cython’s cdef function.

C Functions in Cython with the cdef Keyword
When used to define a function, the cdef keyword creates a function with C-calling
semantics. A cdef function’s arguments and return type are typically statically typed,
and they can work with C pointer objects, structs, and other C types that cannot be
automatically coerced to Python types. It is helpful to think of a cdef function as a C
function that is defined with Cython’s Python-like syntax.

A cdef version of the factorial function would look something like:

cdef long c_fact(long n):
 """Computes n!"""
 if n <= 1:
 return 1
 return n * c_fact(n - 1)

Its definition is very similar to typed_fact, the primary difference being the long return
type.

Careful inspection of c_fact in the preceding example reveals that the argument type
and return type are statically declared, and no Python objects are used; hence, no con‐
versions from Python types to C types are necessary. Calling the c_fact function is as
efficient as calling a pure-C function, so the function call overhead is minimal. Nothing
prevents us from declaring and using Python objects and dynamic variables in cdef
functions, or accepting them as arguments. But cdef functions are typically used when
we want to get as close to C as possible without writing C code directly.

Cython allows cdef functions to be defined alongside Python def functions in the same
Cython source file. The optional return type of a cdef function can be any static type
we have seen, including pointers, structs, C arrays, and static Python types like list or
dict. We can also have a return type of void. If the return type is omitted, then it defaults
to object.

A function declared with cdef can be called by any other function—def or cdef—inside
the same Cython source file (we will see in Chapter 6 how to relax this constraint).
However, Cython does not allow a cdef function to be called from external Python
code. Because of this restriction, cdef functions are typically used as fast auxiliary func‐
tions to help def functions do their job.

Cython’s Three Kinds of Functions | 49

If we want to use c_fact from Python code outside this extension module, we need a
minimal def function that calls c_fact internally:

def wrap_c_fact(n):
 """Computes n!"""
 return c_fact(n)

We get a nice speedup for our efforts: wrap_c_fact(20) is about 10 times faster than
typed_fact(20) and py_fact(20), both of which have significant Python overhead.

Unfortunately, the wrap_c_fact function comes with some limitations. One limitation
is that wrap_c_fact and its underlying c_fact are restricted to C integral types only,
and do not have the benefit of Python’s unlimited-precision integers. In practice, this
means that wrap_c_fact gives erroneous results for arguments larger than some small
value, depending on how large an unsigned long is on our system. For typical 8-byte
C longs, wrap_c_fact(21) yields invalid results. One option to partially address this
limitation while maintaining Cython’s performance would be to use doubles rather than
integral types.

This is a general issue when we are working with Python and C, and is not specific to
Cython: Python objects and C types do not always map to each other perfectly, and we
have to be aware of C’s limitations.

Combining def and cdef Functions with cpdef
There is a third kind of function, declared with the cpdef keyword, that is a hybrid of
def and cdef. A cpdef function combines features from both of the other kinds of
functions and addresses many of their limitations. In the previous section we made the
cdef function c_fact available to Python by writing a def wrapper function,
wrap_c_fact, that simply forwards its arguments on to c_fact and returns its result. A
single cpdef function gives us these two functions automatically: we get a C-only version
of the function and a Python wrapper for it, both with the same name. When we call
the function from Cython, we call the C-only version; when we call the function from
Python, the wrapper is called. In this way, cpdef functions combine the accessibility of
def functions with the performance of cdef functions.

To continue with our example, let us define a cpdef function cp_fact to see how we
can clean up the wrap_c_fact and c_fact combo:

cpdef long cp_fact(long n):
 """Computes n!"""
 if n <= 1:
 return 1
 return n * cp_fact(n - 1)

50 | Chapter 3: Cython in Depth

Our cp_fact provides the speed of c_fact and the Python accessibility of py_fact, all
in one place. Its performance is identical to that of wrap_c_fact; that is, about 10 times
faster than py_fact.

inline cdef and cpdef Functions
C and C++ support an optional inline keyword to suggest that the compiler replace the
so-declared function with its body wherever it is called, thereby further removing call
overhead. The compiler is free to ignore inline.

Cython supports the inline keyword for cdef and cpdef functions—we simply place
inline after the cdef or cpdef keyword:

cdef inline long c_fact(long a):
 # ...

Cython passes this modifier through to the generated C or C++ code.

The inline modifier, when judiciously used, can yield performance improvements,
especially for small inlined functions called in deeply nested loops, for example.

A cpdef function has one limitation, due to the fact that it does double duty as both a
Python and a C function: its arguments and return types have to be compatible with
both Python and C types. Any Python object can be represented at the C level (e.g., by
using a dynamically typed argument, or by statically typing a built-in type), but not all
C types can be represented in Python. So, we cannot use void, C pointers, or C arrays
indiscriminately as the argument types or return type of cpdef functions. Table 3-2 may
be useful here.

Functions and Exception Handling
A def function always returns some sort of PyObject pointer at the C level. This invar‐
iant allows Cython to correctly propagate exceptions from def functions without is‐
sue. Cython’s other two function types—cdef and cpdef—may return a non-Python
type, which makes some other exception-indicating mechanism necessary.

For example, suppose we have a cpdef function that divides integers, and therefore must
consider what to do when the denominator is zero:

cpdef int divide_ints(int i, int j):
 return i / j

If we call divide_ints with j=0, a ZeroDivisionError exception will be set, but there
is no way for divide_ints to communicate this to its caller:

Cython’s Three Kinds of Functions | 51

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c7d650>)

In [2]: from division import divide_ints

In [3]: divide_ints(1, 1)
Out[3]: 1

In [4]: divide_ints(1, 0)
Exception ZeroDivisionError: 'integer division or modulo by zero'
 in 'division.divide_ints' ignored
Out[4]: 0

Note that even though Python detects the ZeroDivisionError, the warning message
indicates that it was ignored, and the call to divide_ints(1, 0) returns an erroneous
value of 0.

To correctly propagate this exception, Cython provides an except clause to allow a cdef
or cpdef function to communicate to its caller that a Python exception has or may have
occurred during its execution:

cpdef int divide_ints(int i, int j) except? -1:
 return i / j

Because we modified the Cython source, we must restart the Python (or IPython) in‐
terpreter; otherwise, we cannot access our modified version of divide_ints:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c67690>)

In [2]: from division import divide_ints

In [3]: divide_ints(1, 0)
Traceback (most recent call last):
File "<ipython-input-3-27c79d4283e7>", line 1, in <module>
 divide_ints(1, 0)
File "division.pyx", line 1, in division.divide_ints (...)
 cpdef int divide_ints(int i, int j) except? -1:
File "division.pyx", line 2, in division.divide_ints (...)
 return i / j
ZeroDivisionError: integer division or modulo by zero

We see that the exception is now correctly propagated and is no longer ignored.

The except? -1 clause allows the return value -1 to act as a possible sentinel that an
exception has occurred. If divide_ints ever returns -1, Cython checks if the global
exception state has been set, and if so, starts unwinding the stack. We do not have to set
the return value to -1 ourselves when an exception occurs; Cython does this for us
automatically. The value -1 here is arbitrary: we could have used a different integer
literal that is within the range of values for the return type.

52 | Chapter 3: Cython in Depth

In this example we use a question mark in the except clause because -1 might be a valid
result from divide_ints, in which case no exception state will be set. If there is a return
value that always indicates an error has occurred without ambiguity, then the question
mark can be omitted. Alternatively, to have Cython check if an exception has been raised
regardless of return value, we can use the except * clause instead. This will incur some
overhead.

Functions and the embedsignature Compiler Directive
When working with a pure-Python function, we can easily see its signature when using
IPython’s introspection:

In [11]: interpreted_fact?
Type: function
String Form:<function interpreted_fact at 0x101c711b8>
File: [...]
Definition: interpreted_fact(n)
Docstring: Computes n!

IPython calls the signature of interpreted_fact the definition.

Cython-compiled def and cpdef functions do have a standard docstring, but do not
include a signature by default:

In [12]: fact.py_fact?
Type: builtin_function_or_method
String Form:<built-in function py_fact>
Docstring: Computes n!

We can instruct Cython to inject the compiled function’s Python signature into the
docstring with the embedsignature compiler directive (see “Compiler Directives” on
page 28).

When embedsignature is set to True, we see the signature for py_fact in the output:

In [3]: fact.py_fact?
Type: builtin_function_or_method
String Form:<built-in function py_fact>
Docstring:
py_fact(n)
Computes n!

This can be helpful to know the argument names, their default values, the order in which
arguments are passed in, and more.

Cython’s Three Kinds of Functions | 53

Generated C Code
The cython compiler outputs either a C or a C++ source file. The generated code is
highly optimized, and the variable names are modified from the original. For these
reasons, it is not particularly easy to read.

For a very simple Cython function called mult, defined in mult.pyx, let’s see a little bit
of the generated source. Let’s first compile a fully dynamic version:

def mult(a, b):
 return a * b

We place this function in mult.pyx and call cython to generate mult.c:

$ cython mult.pyx

Looking at mult.c, we see it is several thousand lines long. Some of this is extension
module boilerplate, and most is support code that is not actually used for trivial func‐
tions like this. Cython generates embedded comments to indicate what C code corre‐
sponds to each line of the original Cython source.

Let’s look at the generated C code that computes a + b:

 /* "mult.pyx":3
 *
 * def mult(a, b):
 * return a * b # <<<<<<<<<<<<<<
 */
 __pyx_t_1 = PyNumber_Multiply(__pyx_v_a, __pyx_v_b);
 if (unlikely(!__pyx_t_1)) {
 __pyx_filename = __pyx_f[0];
 __pyx_lineno = 3;
 __pyx_clineno = __LINE__;
 goto __pyx_L1_error;
 }

We see that the generated code is calling the PyNumber_Multiply function from the
Python/C API, which is the most general way to multiply any two objects in Python
(not just numbers, despite the name). The types of the __pyx_v_a and __pyx_v_b vari‐
ables are PyObject*. This code will work for any objects that support multiplication,
and will raise an exception otherwise.

Let’s add static typing to mult:

def mult(int a, int b):
 return a * b

The generated source code now does C-level multiplication of C integers, which will
have much better performance:

54 | Chapter 3: Cython in Depth

 /* "mult.pyx":3
 *
 * def mult(int a, int b):
 * return a * b # <<<<<<<<<<<<<<
 */
 __pyx_t_1 = __Pyx_PyInt_From_int((__pyx_v_a * __pyx_v_b));
 /* etc. */

The __pyx_v_a and __pyx_v_b variables are now declared as ints, as we would expect
with our changed declaration, and Cython now computes the product of a and b by
generating a call to __Pyx_PyInt_From_int, which is a thin wrapper around the Python/
C API function PyInt_FromLong.

A more convenient way to check the generated code is found in Chapter 9, which covers
compile-time options that generate an annotated source file. These annotated files help
us determine in a high-level way whether Cython is generating the fastest possible code.

Type Coercion and Casting
Both C and Python have well-defined rules for coercion between numeric types. Because
statically typed numeric types in Cython are C types, C coercion rules apply here as well.

Explicit casting between types is common in C, especially when we’re dealing with C
pointers. Cython provides a casting operator that is very similar to C’s casting operator,
except that it replaces parentheses with angle brackets. A simple cast from a void * to
an int * would look like:

cdef int *ptr_i = <int*>v

For this example, the cython compiler generates the C equivalent:

int *ptr_i = (int*)v;

Explicit casting in C is not checked, providing total control over type representation.
For example, it is possible—but not recommended—to create a function print_address
that prints the memory address of a Python object, which should be equivalent to the
object’s identity as returned by the id built-in function:

def print_address(a):
 cdef void *v = <void*>a
 cdef long addr = <long>v
 print "Cython address:", addr
 print "Python id :", id(a)

We can try out print_address on systems where sizeof(void*) equals sizeof(long):

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c64290>)

In [2]: import casting

Type Coercion and Casting | 55

In [3]: casting.print_address(1)
Cython address: 4298191640
Python id : 4298191640

We can use casting with Python extension types, either built-in or types that we define
ourselves (Chapter 5). A somewhat contrived example:

def cast_to_list(a):
 cdef list cast_list = <list>a
 print type(a)
 print type(cast_list)
 cast_list.append(1)

In this example, we take a Python object of any type and cast it to a static list. Cython
will treat cast_list as a list at the C level, and will call either PyList_SET_ITEM or
PyList_Append on it for the last line. This will succeed as long as the argument is a list
or a subtype, and will raise a nasty SystemError exception otherwise. Such bare casts
are appropriate only when we are certain that the object being cast has a compatible
type.

When we are less than certain and want Cython to check the type before casting, we
can use the checked casting operator instead:

def safe_cast_to_list(a):
 cdef list cast_list = <list?>a
 print type(a)
 print type(cast_list)
 cast_list.append(1)

This version of the function will raise a saner TypeError when a is not a list or a
subtype at casting time.

Casting also comes into play when we are working with base and derived classes in an
extension type hierarchy. See Chapter 5 for more on extension types with Cython.

Declaring and Using structs, unions, and enums
Cython also understands how to declare, create, and manipulate C structs, unions, and
enums. For the un-typedefed C struct or union declaration:

struct mycpx {
 int a;
 float b;
};

union uu {
 int a;
 short b, c;
};

56 | Chapter 3: Cython in Depth

the equivalent Cython declarations are:

cdef struct mycpx:
 float real
 float imag

cdef union uu:
 int a
 short b, c

Cython’s syntax for struct and union declarations uses cdef and an indented block for
the struct or union members. This is another case where Cython blends Python with
C: it uses Python-like blocks to define C-level constructs.

We can combine struct and union declarations with ctypedef, which creates a new
type alias for the struct or union:

ctypedef struct mycpx:
 float real
 float imag

ctypedef union uu:
 int a
 short b, c

To declare a variable with the struct type, simply use cdef, and use the struct type as
you would any other type:

cdef mycpx zz

The declaration of zz is the same whether the struct was declared with cdef or
ctypedef.

We can initialize a struct in three ways:

• We can use struct literals:
cdef mycpx a = mycpx(3.1415, -1.0)
cdef mycpx b = mycpx(real=2.718, imag=1.618034)

Note the use of function-like syntax, including keyword-like argument support.
This is another instance where Cython blends Python and C++ constructs.

• The struct fields can be assigned by name individually:
cdef mycpx zz
zz.real = 3.1415
zz.imag = -1.0

For initialization, struct literals are more convenient, but direct assignment can be
used to update an individual field.

• Lastly, structs can be assigned from a Python dictionary:
cdef mycpx zz = {'real': 3.1415, 'imag': -1.0}

Declaring and Using structs, unions, and enums | 57

This uses Cython’s automatic conversion to do the individual assignments auto‐
matically. Note that this involves more Python overhead.

Nested and anonymous inner struct or union declarations are not supported. It is
necessary to un-nest the declarations and to provide dummy names when necessary.
For example, this nested C struct declaration:

struct nested {
 int outer_a;
 struct _inner {
 int inner_a;
 } inner;
};

can be declared in Cython like this:

cdef struct _inner:
 int inner_a

cdef struct nested:
 int outer_a
 _inner inner

We can initialize a nested struct on a field-by-field basis or by assigning to a nested
dictionary that matches the structure of nested:

cdef nested n = {'outer_a': 1, 'inner': {'inner_a': 2}}

To define an enum, we can define the members on separate lines, or on one line separated
with commas:

cdef enum PRIMARIES:
 RED = 1
 YELLOW = 3
 BLUE = 5

cdef enum SECONDARIES:
 ORANGE, GREEN, PURPLE

An enum can be declared with either ctypedef or cdef, as in the preceding examples,
like a struct or union.

Anonymous enums are useful to declare global integer constants:

cdef enum:
 GLOBAL_SEED = 37

Structs, unions, and enums will be used more frequently when we interface with external
code in Chapters 7 and 8.

58 | Chapter 3: Cython in Depth

Type Aliasing with ctypedef
Another C feature that Cython supports is type aliasing with the ctypedef keyword.
This is used in a similar way to C’s typedef statement, and is essential when interfacing
with external code that uses typedef aliases. We will see more of ctypedef in Chapters
7 and 8.

Here’s a simple example:

ctypedef double real
ctypedef long integral

def displacement(real d0, real v0, real a, real t):
 """Calculates displacement under constant acceleration."""
 cdef real d = d0 + (v0 * t) + (0.5 * a * t**2)
 return d

In this example, the ctypedef aliases allow us to switch the precision of the calculation
from double precision to single precision by changing a single line of the program.
Cython is able to convert between Python numeric types and these ctypedef type aliases
without difficulty.

The ctypedef feature is particularly useful for C++, when typedef aliases can signifi‐
cantly shorten long templated types. A ctypedef statement must occur at file scope, and
cannot be used inside a function (or other local) scope to declare a local type name. The
typedef is passed through to the generated source code.

Fused Types and Generic Programming
Cython has a novel typing feature, known as fused types, that allows us to refer to several
related types with a single type definition. As of this writing, fused types are experi‐
mental, and their syntax and semantics may change in future releases. We will therefore
cover just the basics here. We will also mention them where relevant in later chapters.

Cython provides three built-in fused types that we can use directly: integral,
floating, and numeric. All are accessed via the special cython namespace, which must
be cimported (see Chapter 6).

The integral fused type groups together the C short, int, and long scalar types. The
floating fused type groups the float and double C types, and numeric—the most
general—groups all integral and floating types along with float complex and
double complex. Let’s look at an example to make fused types more concrete.

Consider the following implementation of max for integral values:

Type Aliasing with ctypedef | 59

from cython cimport integral

cpdef integral integral_max(integral a, integral b):
 return a if a >= b else b

Because we’ve used cython.integral as the argument and return type, Cython creates
three versions of integral_max: one for a and b both shorts, one for them both ints,
and one for them both longs. Cython will use the long version when we call inte
gral_max from Python. When we call integral_max from other Cython code, Cython
checks the argument types at compile time to determine which version of inte
gral_max to use.

For example, these three uses of integral_max from Cython are allowed:

cdef allowed():
 print integral_max(<short>1, <short>2)
 print integral_max(<int>1, <int>2)
 print integral_max(<long>5, <long>10)

But we cannot mix specializations for the same fused type from other Cython code;
doing so generates a compile-time error, as Cython does not have a version of
integral_max to dispatch:

cdef not_allowed():
 print integral_max(<short>1, <int>2)
 print integral_max(<int>1, <long>2)

Trying to pass in a float or double to integral_max will result in a compile-time error
if we’re doing so from Cython, and will result in a TypeError if we’re doing so from
Python.

It would be nice to generalize integral_max to support floats and doubles as well. We
cannot use the cython.numeric fused type to do so, because complex numbers are not
comparable. But we can create our own fused type to group the integral and floating
C types. This uses the ctypedef fused statement:

cimport cython

ctypedef fused integral_or_floating:
 cython.short
 cython.int
 cython.long
 cython.float
 cython.double

cpdef integral_or_floating generic_max(integral_or_floating a,
 integral_or_floating b):
 return a if a >= b else b

The generic_max function now has five specializations, one for each C type included
in the ctypedef fused block, and can therefore handle floating arguments as well as
integral arguments.

60 | Chapter 3: Cython in Depth

If a function or method uses a fused type, at least one of its arguments must be declared
with that fused type, to allow Cython to determine the actual function specialization to
dispatch to at compile time or runtime. Provided at least one argument has a fused type,
the function or method can have local variables of the fused type as well.

Fused types—and their associated generic functions—have several other features, some
of which we will point out in Chapters 8 and 10. Currently the most significant limitation
of fused types is that they cannot be used for extension type attributes (Chapter 5). We
do not go into full depth on fused types because this feature is still in its infancy. Please
refer to Cython’s online documentation for the most up-to-date material on fused types.

Cython for Loops and while Loops
Python for and while loops are flexible and high level; their syntax is natural and reads
like pseudocode. Cython supports for and while loops without modification. Because
loops, by nature, often occupy the majority of a program’s runtime, it is worth keeping
in mind some pointers to ensure Cython can translate Python looping constructs into
efficient C analogues.

Consider the common Python for loop over a range:

n = 100
...
for i in range(n):
 # ...

If the index variable i and range argument n are dynamically typed, Cython may not
be able to generate a fast C for loop. We can easily fix that by typing i and n:

cdef unsigned int i, n = 100
for i in range(n):
 # ...

The static typing ensures Cython generates efficient C code:

for (i=0; i<n; ++i) {
 /* ... */
}

Cython is often able to infer types and generate fast loops automatically, but not always.
The following guidelines will help Cython generate efficient loops.

Guidelines for Efficient Loops
When looping over a range call, we should type the range argument as a C integer:

Cython for Loops and while Loops | 61

http://docs.cython.org/src/userguide/fusedtypes.html

cdef int N
...
for i in range(N):
 # ...

Cython will automatically type the loop index variable i as an int as well, provided we
do not use the index in an expression in the loop body. If we do use i in an expression,
Cython cannot automatically infer whether the operation will overflow, and conserva‐
tively refuses to infer a C integer type.

If we are certain the expression will not cause integer overflow, we should statically type
the index variable as well:

cdef int i, N
for i in range(N):
 a[i] = i + 1

When looping over a container (list, tuple, dict, etc.), statically typing the loop in‐
dexing variable may introduce more overhead, depending on the situation. For efficient
loops over containers, consider converting the container to a C++ equivalent container
(Chapter 8) or using typed memoryviews (Chapter 10) instead.

These guidelines will likely reduce loop overhead. We will learn more about optimizing
loop bodies we cover Cython’s NumPy support and typed memoryviews in Chapter 10.

To ensure efficient while loops, we must make the loop condition expression efficient.
This may involve using typed variables and cdef functions. Simple while True loops
with an internal break are efficiently translated to C automatically.

Loop Example
Say we want to smooth a one-dimensional array by updating each element with the
average of that point with its immediate neighbors. A Python version (ignoring end‐
points) would be:

n = len(a) - 1
"a" is a list or array of Python floats.
for i in range(1, n):
 a[i] = (a[i-1] + a[i] + a[i+1]) / 3.0

Because we have to access the i-1 and i+1 elements on each iteration, we cannot iterate
through a directly. This example is almost in a Cython-friendly format. We only need
to add some minimal typing information for Cython to generate a fast loop:

cdef unsigned int i, n = len(a) - 1
for i in range(1, n):
 a[i] = (a[i-1] + a[i] + a[i+1]) / 3.0

Peeking at the generated source, we find that the for statement in the preceding example
is translated into:

62 | Chapter 3: Cython in Depth

for (i = 1; i < n; i += 1) {
 /* ... */
}

In this case, because we use i in indexing expressions, it is essential that we statically
type the indexing variable. Typing n is, however, optional; the following version is just
as efficient (but perhaps slightly more difficult to read):

cdef unsigned int i
for i in range(1, len(a) - 1):
 a[i] = (a[i-1] + a[i] + a[i+1]) / 3.0

Performance-wise, the Cython code with the extra typing information is consistently
two to three times faster than the untyped equivalent.

The Cython Preprocessor
Cython has a DEF keyword that creates a macro, which is a compile-time symbolic con‐
stant akin to #define C preprocessor symbolic macros. These can be useful for giving
meaningful names to magic numbers, allowing them to be updated and changed in a
single location. They are textually substituted with their value at compile time.

For example:

DEF E = 2.718281828459045
DEF PI = 3.141592653589793

def feynmans_jewel():
 """Returns e**(i*pi) + 1. Should be ~0.0"""
 return E ** (1j * PI) + 1.0

DEF constants must resolve at compile time and are restricted to simple types. They can
be made up of literal integrals, floating-point numbers, strings, predefined DEF variables,
calls to a set of predefined functions, or expressions involving these types and other DEF
variables.

The set of predefined compile-time names, listed in Table 3-3, corresponds to what is
returned by os.uname.

Table 3-3. Predefined compile-time names
Predefined DEF variable Meaning

UNAME_SYSNAME Operating system name

UNAME_RELEASE Operating system release

UNAME_VERSION Operating system version

UNAME_MACHINE Machine hardware name

UNAME_NODENAME Name on network

The Cython Preprocessor | 63

The constants, functions, and types available for defining a DEF constant are summarized
in Table 3-4.

Table 3-4. DEF constants, functions, and types
Kind Options

Constants None, True, False

Built-in functions abs, chr, cmp, divmod, enumerate, hash, hex, len, map, max, min, oct, ord, pow, range,
reduce, repr, round, sum, xrange, zip

Built-in types bool, complex, dict, float, int, list, long, slice, str, tuple

Remember that the righthand side of a DEF declaration must ultimately evaluate to an
int, float, or string object. The cython compiler will yield an error if it does not.

Like the C preprocessor, cython also supports conditional compilation with the all-caps
IF-ELIF-ELSE compile-time statement. This can appear anywhere a normal Python
statement or declaration can, and it can use any value that is valid in that context. IF
statements can be nested. The types they use are not restricted like DEF constants, and
they determine truth and falsehood according to Python semantics.

Taking an example from Cython’s documentation, say we want to branch based on the
OS we are on:

IF UNAME_SYSNAME == "Windows":
 # ...Windows-specific code...
ELIF UNAME_SYSNAME == "Darwin":
 # ...Mac-specific code...
ELIF UNAME_SYSNAME == "Linux":
 # ...Linux-specific code...
ELSE:
 # ...other OS...

The last area to cover is Cython’s support for Python 2 and Python 3.

Bridging the Python 2 and Python 3 Divide
As we learned in Chapter 2, cython generates a C source file that is compiled into an
extension module with a specific version of Python. Conveniently, we can write our
Cython .pyx file using either Python 2 or Python 3 syntax. The generated C source file
is compatible with either Python 2 or Python 3. This means any Cython code can be
compiled for either Python 2 or Python 3 runtimes.

64 | Chapter 3: Cython in Depth

Python 3 changed both the Python language and the C API in
nontrivial ways. Python 2 extension modules can be particularly dif‐
ficult to port to Python 3, given the language (C) and the lack of
automatic conversion tools. Cython’s ability to generate a single ex‐
tension module that can be compiled, unmodified, for either Python
2 or Python 3 can remove much of the pain and tedium of porting
version 2 extension code to version 3.

By default, Cython assumes the source language version (the version of Python in
the .pyx or .py file) uses Python 2 syntax and semantics. This can be set explicitly with
the -2 and -3 flags at compile time, the latter changing the default behavior to Python
3 syntax and semantics.

For example, in Python 2 print is a statement, whereas in Python 3 it is a function. If
we have the following file named einstein.pyx:

import sys
print("If facts don't fit the theory, change the facts.", file=sys.stderr)

it will not compile assuming Python 2 syntax. So, we must pass in the -3 flag to set
Python 3 syntax:

$ cython -3 einstein.pyx

The -2 and -3 cython compiler flags are necessary only if a lan‐
guage construct has different semantics in the respective language
version.

The resulting einstein.c file can be compiled against the Python 2 or Python 3 runtime.
With Python 2, the resulting extension module will run as if the print function were
instead the Python 2 print statement. This feature allows us to use a specific Python
version for the .pyx source, and distribute the extension module source file to anyone,
regardless of the version of Python being used to run the extension module.

Cython decouples the .pyx language version from the runtime ver‐
sion, nicely managing the Python 2 and Python 3 language divide
for us.

Besides decoupling the source and runtime language versions, Cython supports the
unicode_literals, print_function, and division imports from __future__ to bring
Python 3 semantics into Python 2.

Bridging the Python 2 and Python 3 Divide | 65

String types were significantly changed in Python 3, and deserve special mention. Cy‐
thon has several features to manage string types in a version-agnostic way.

str, unicode, bytes, and All That
Python 2 and Python 3 handle strings and string types differently. Both have a string
type that represents a sequence of 8-bit characters, and both have a string type that
represents a sequence of variable-width characters. They are named differently in each
implementation.

Because Cython straddles the Python 2 and Python 3 divide, it handles strings and string
types in a way that allows it to generate code that is compatible with Python 2 or Python
3. This means that Cython string types differ from Python 2 strings and Python 3 strings.
Several points of note:

• The bytes type is the same for all versions, and Cython supports bytes as is.
• Cython’s str type is equivalent to bytes when run with Python 2, and is equiva‐

lent to the Unicode str type when run with Python 3.
• The Cython unicode type is identical to the unicode type when run with Python

2, and is equivalent to the str type when run with Python 3.
• The Cython basestring type is a base type for all string types on both versions,

useful for type checking with isinstance.
• By default, Cython does not allow implicit conversion between unicode strings and

data buffers; it requires setting a compiler directive (see next points) or explicit
encoding and decoding to convert between the different types.

• Cython provides the global c_string_type compiler directive to set the type of an
implicit conversion from char * (or from std::string in C++). The directive can
take the value bytes, str, or unicode.

• Cython also provides the global c_string_encoding compiler directive to control
the encoding used when implicitly converting char * or std::string to a unicode
object. The directive can take the name of any valid Unicode encoding (ascii,
utf-8, etc.). It can also take the value default, which is utf-8 in Python 3 and
ascii in Python 2. The only allowed encoding to convert a unicode object to char *
is default or ascii.

• Dynamically typed string variables typically just work, and the cython compiler
will notify us when an explicit encoding or decoding operation is required.

• Statically typed Cython str variables can be difficult to use without the
c_string_type and c_string_encoding directives, since str in Cython can be
equivalent to either bytes in Python 2 or unicode in Python 3. The cython compiler
will yield errors or warnings when assigning to a statically typed str object without

66 | Chapter 3: Cython in Depth

explicitly encoding the righthand side. It is often better to statically type strings in
Cython with the unambiguous bytes and unicode types.

• The C char * type and the C++ string type are automatically compatible with the
bytes type.

More information on working with string types in Cython can be found in Cython’s
included documentation.

Summary
This chapter covers the core Cython language features in depth; we will build on these
features in future chapters. Because these features are fundamental to Cython, many
online examples of their usage can be found via straightforward searches.

Cython’s Adoption
Given that Cython is in some sense an auxiliary language, it is rare to have a project
entirely or even primarily written in it. Nevertheless, it is a full-fledged language with
its own syntax and idioms. Searching GitHub for all Cython files, we found approxi‐
mately 15,000 source files spread over thousands of repositories as of mid-2014.

Cython’s use is so pervasive that a complete catalog of all projects using it would be
impossible. But we can survey several foundational projects in the Python ecosystem
that use Cython. Some of these projects use it in an auxiliary fashion, to bring in an
external random number generation library or speed up a small performance-critical
component. Others, like Sage, have Cython at their core.

Some prominent projects that use Cython, and their respective lines of Cython code as
of September 2014, are summarized in Table 3-5.

Table 3-5. Cython’s SLOC in foundational Python projects
Project Lines of Cython

Sage 477,000

NumPy 5,000

SciPy 24,000

Pandas 27,000

scikit-learn 15,000

scikit-image 11,000

MPI4Py 12,000

PETSc4Py 18,000

lxml 22,000

yt 18,000

Summary | 67

http://www.sagemath.org/

3. Cython itself has approximately 100,000 monthly PyPI downloads, and together, NumPy, SciPy, Pandas, and
lxml have more than 1 million monthly PyPI downloads. NumPy alone has several million direct downloads
per year (not accounting for installations via prepackaged distributions).

Given the pervasiveness of projects like NumPy, SciPy, Pandas, scikit-learn, and scikit-
image, Cython code is used directly or indirectly by millions of end users, developers,
analysts, engineers, and scientists.3

If the Pareto principle is to be believed, then roughly 80 percent of the runtime in a
library is due to just 20 percent of the code. For a Python project to see major perfor‐
mance improvements, it need only convert a small fraction of its code base from Python
to Cython.

It is no accident that the most active Cython projects have a data analysis and scientific
computing bent. Cython shines in these domains for several reasons:

• Cython can wrap existing C, C++, and Fortran libraries efficiently and easily, pro‐
viding access to existing functionality that is already optimized and debugged.

• Memory- and CPU-bound Python computations perform much better when trans‐
lated into a statically typed language.

• When dealing with large data sets, having control over the precise data types and
data structures at a low level can yield efficient storage and improved performance
when compared to Python’s built-in data structures.

• Cython can share homogeneous and contiguous arrays with C, C++, and Fortran
libraries and make them easily accessible to Python via NumPy arrays.

But Cython is not a one-trick pony. It can speed up general Python code, including data
structure–intensive algorithms. For example, lxml, a widely used high-performance
XML parser, uses Cython extensively. It is not under the scientific computing umbrella,
but Cython works just as well here.

Cython allows us to choose exactly where on the high level Python–to–low level C
spectrum we would like to program.

68 | Chapter 3: Cython in Depth

CHAPTER 4

Cython in Practice: N-Body Simulation

The programmer, like the poet, works only slightly removed from pure thought-
stuff. He builds his castles in the air, from air, creating by exertion of the imag‐
ination. Few media of creation are so flexible, so easy to polish and rework, so

readily capable of realizing grand conceptual structures.
— F. Brooks

This chapter applies the Cython fundamentals discussed in Chapter 3 to a straightfor‐
ward but nontrivial example using what we have covered so far. The example starts with
a pure-Python N-body simulator to model the solar system, and converts the
performance-critical components to use Cython constructs. It comes from the widely
known computer language benchmarks game, allowing comparison between the pure-
Python, Cython, and C implementations of the same program.

This chapter will give us a better understanding of how Cython is used in practice. The
pure-C, pure-Python, and converted Cython versions can be found in the example code
repository. Interested readers can follow along with the entire example using this re‐
source.

Overview of the N-Body Python Code
The Python N-body code evolves the positions and velocities of the four Jovian planets
in a heliocentric coordinate system. Such a system is chaotic, meaning that the long-
term evolution of the system is very sensitive to the initial positions and velocities of all
bodies. Small perturbations in the initial conditions lead to arbitrarily diverging results,
making prediction difficult. When we are simulating a chaotic system, it is important
that the algorithm, or integrator, be highly accurate. For this reason the N-body code

69

http://benchmarksgame.alioth.debian.org/
https://github.com/cythonbook/examples
https://github.com/cythonbook/examples

uses a symplectic integrator, which is a fancy term for a time-stepping scheme that does
a really good job of computing the right trajectories.

The time step and the initial positions, velocities, and masses of the Jovian planets are
given. By passing in a command-line argument, we can vary the number of time steps
the integrator takes.

The main routine is straightforward. It takes the number of steps to integrate (n) the
initial conditions of the celestial bodies to integrate, and a reference body (in this case,
the Sun):

def main(n, bodies=BODIES, ref='sun'):
 # ...

It first gets a list of all the bodies and makes pairs of all of them for convenience, as many
functions need to iterate over all unique pairs:

 # ...
 system = list(bodies.values())
 pairs = combinations(system)

It then calls offset_momentum to correct the Sun’s momentum so that it stays at the
system’s center of mass:

 # ...
 offset_momentum(bodies[ref], system)

Before running the integrator, main first calls report_energy to compute and print the
system’s total energy:

 # ...
 report_energy(system, pairs)

Symplectic integrators are very good at conserving energy, and we will use energy con‐
servation as a way to test the accuracy of the integrator.

After getting the initial energy, we then call advance, the core of the computation, and
pass in the time step, the number of steps to take, and the sequence of paired bodies:

 # ...
 advance(0.01, n, system, pairs)

For this simulation, the unit of time is the mean solar day, the unit of distance is one
astronomical unit, and the unit of mass is the solar mass.

After advancing the system, we output the total energy again:

 # ...
 report_energy(system, pairs)

Its value should be close to the total energy computed before advance was called.

Let’s try it out from the command line:

70 | Chapter 4: Cython in Practice: N-Body Simulation

$ time python nbody.py 500000
-0.169075164
-0.169096567
python nbody.py 500000 13.21s user 0.04s system 99% cpu 13.286 total

The energy before and after match to nearly five decimal places.

This pure-Python version requires about 13 seconds to advance 500,000 steps. When
all is said and done, Cython will improve performance by nearly two orders of magni‐
tude, approaching the performance of a pure-C version of the same algorithm.

Converting to Cython
Let’s first run our pure-Python version under cProfile to quantify where the runtime
is spent:

$ ipython --no-banner

In [1]: %run -p nbody.py 500000
 71 function calls in 13.897 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
 1 13.880 13.880 13.896 13.896 nbody.py:59(advance)
 2 0.015 0.008 0.015 0.008 {range}
 1 0.001 0.001 13.897 13.897 {execfile}
 2 0.000 0.000 0.000 0.000 nbody.py:82(report_energy)
 ...

It is not surprising to find that advance consumes 99.9 percent of the runtime. Con‐
verting it to use static types and more efficient data structures is the right approach. The
rest of the code can remain as is.

Before we begin converting our code to Cython, we first copy the nbody.py file to
nbody.pyx, which allows us to use Cython-specific declarations and constructs.

Let’s compile and run the Cython version to ensure the program works correctly. To
compile, we use a simple distuils script named setup.py:

from distutils.core import setup
from Cython.Build import cythonize

setup(name="nbody",
 ext_modules=cythonize("nbody.pyx"))

We need a run_nbody.py driver script to run the main function inside our nbody exten‐
sion module:

Converting to Cython | 71

import sys
from nbody import main

main(int(sys.argv[1]))

Building our extension is straightforward:

$ python setup.py build_ext -i

(Consult Chapter 2 for platform-specific compilation instructions.)

After compiling our extension, we can test that we obtain the same results as before:

$ time python run_nbody.py 500000
-0.169075164
-0.169096567
python run_nbody.py 500000 4.78s user 0.03s system 99% cpu 4.821 total

The output is identical to the pure-Python version’s, and the performance already im‐
proved by a factor of 2.8. Cython provides this performance improvement essentially
for free.

With our compilation infrastructure in place, we can turn our attention to improving
performance further still.

Python Data Structures and Organization
In Python, each celestial body is represented as a tuple with three elements: two three-
element lists for the position and velocity, and a float value for the mass. For example,
the Sun’s initial condition is represented by the following three-element tuple:

([0.0, 0.0, 0.0], # position
 [0.0, 0.0, 0.0], # velocity
 SOLAR_MASS # mass
)

And Jupiter’s is:

([4.84143144246472090e+00,
 -1.16032004402742839e+00,
 -1.03622044471123109e-01],
 [1.66007664274403694e-03 * DAYS_PER_YEAR,
 7.69901118419740425e-03 * DAYS_PER_YEAR,
 -6.90460016972063023e-05 * DAYS_PER_YEAR],
 9.54791938424326609e-04 * SOLAR_MASS),

The global constants DAYS_PER_YEAR and SOLAR_MASS are defined normalization
parameters.

The system variable is a list of these tuples, and pairs is a list of all pairs of these tuples.
The simulation will access and update the positions and velocities of all planets fre‐
quently, so optimizing their representation is essential.

72 | Chapter 4: Cython in Practice: N-Body Simulation

The advance function loops over all steps, and for each step, loops over all pairs of
bodies:

def advance(dt, n, bodies, pairs):
 for i in range(n):
 for (([x1, y1, z1], v1, m1),
 ([x2, y2, z2], v2, m2)) in pairs:
 # ...update velocities...

Here we use tuple unpacking to extract the positions (x1, x2, y1, y2, etc.), the velocity
lists v1 and v2, and the masses m1 and m2 from each pair in pairs. The body of the loop
updates the velocities according to the symplectic integration algorithm.

Once the velocities are updated, we update the positions:

 for (r, [vx, vy, vz], m) in bodies:
 r[0] += dt * vx
 r[1] += dt * vy
 r[2] += dt * vz

The bodies and pairs sequences are set up to refer to the same objects, so updating the
velocities in the first loop allows us to update the positions in the second, even though
we are looping over different sequences.

Converting Data Structures to structs
Our strategy to improve performance is to convert the pure-Python list-of-tuples-of-
lists-of-floats into a C array of C structs. With the C version, accessing and updating
the planet’s data will have much better performance, as these operations will use fast C
iteration and optimized lookups, rather than the general (and slow) iteration and look‐
ups we know to expect from the Python interpreter.

Let’s define a struct, body_t, that has two double arrays for the body’s position and
velocity, and a single double for its mass:

cdef struct body_t:
 double x[3]
 double v[3]
 double m

We place this struct definition toward the top of nbody.pyx.

Another goal is to leave most of the nbody.py code unmodified, and use our body_t
struct only where performance matters.

The advance function needs to convert the Python list of tuples of celestial body data
into a C array of body_t elements. Let’s make a cdef function pair to convert between
Python and C data types.

Converting to Cython | 73

First, make_cbodies converts a Python list of tuples into a C array of body_t structs. It
takes a bodies Python list and a preallocated C array of body_ts:

cdef void make_cbodies(list bodies, body_t *cbodies)

The implementation simply loops over the bodies list and initializes the preallocated
cbodies array with the Python list’s data:

cdef void make_cbodies(list bodies, body_t *cbodies, int num_cbodies):
 cdef body_t *cbody
 for i, body in enumerate(bodies):
 if i >= num_cbodies:
 break
 (x, v, m) = body
 cbody = &cbodies[i]
 cbody.x[0], cbody.x[1], cbody.x[2] = x
 cbody.v[0], cbody.v[1], cbody.v[2] = v
 cbodies[i].m = m

Its complement, make_pybodies, converts a body_t array into a Python list of tuples:

cdef list make_pybodies(body_t *cbodies, int num_cbodies):
 pybodies = []
 for i in range(num_cbodies):
 x = [cbodies[i].x[0], cbodies[i].x[1], cbodies[i].x[2]]
 v = [cbodies[i].v[0], cbodies[i].v[1], cbodies[i].v[2]]
 pybodies.append((x, v, cbodies[i].m))
 return pybodies

Now we are ready to convert the for loops in advance to use static types. First, consid‐
er the original loop body:

def advance(dt, n, bodies, pairs):
 # ...
 for (([x1, y1, z1], v1, m1),
 ([x2, y2, z2], v2, m2)) in pairs:
 dx = x1 - x2
 dy = y1 - y2
 dz = z1 - z2
 mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))
 b1m = m1 * mag
 b2m = m2 * mag
 v1[0] -= dx * b2m
 v1[1] -= dy * b2m
 v1[2] -= dz * b2m
 v2[0] += dx * b1m
 v2[1] += dy * b1m
 v2[2] += dz * b1m

The Cython version is as follows:

def advance(double dt, int n, bodies):
 cdef:
 int i, ii, jj

74 | Chapter 4: Cython in Practice: N-Body Simulation

 double dx, dy, dz, mag, b1m, b2m
 body_t *body1
 body_t *body2
 body_t cbodies[NBODIES]

 make_cbodies(bodies, cbodies, NBODIES)

 for i in range(n):
 for ii in range(NBODIES-1):
 body1 = &cbodies[ii]
 for jj in range(ii+1, NBODIES):
 body2 = &cbodies[jj]
 dx = body1.x[0] - body2.x[0]
 dy = body1.x[1] - body2.x[1]
 dz = body1.x[2] - body2.x[2]
 mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))
 b1m = body1.m * mag
 b2m = body2.m * mag
 body1.v[0] -= dx * b2m
 body1.v[1] -= dy * b2m
 body1.v[2] -= dz * b2m
 body2.v[0] += dx * b1m
 body2.v[1] += dy * b1m
 body2.v[2] += dz * b1m
 for ii in range(NBODIES):
 body2 = &cbodies[ii]
 body2.x[0] += dt * body2.v[0]
 body2.x[1] += dt * body2.v[1]
 body2.x[2] += dt * body2.v[2]

 return make_pybodies(cbodies, NBODIES)

We convert the for loop over pairs into nested for loops over indices into the C array
of body_t structs. We use two body_t pointers to refer to the current bodies in the pair.

We removed the pairs argument to advance, so we need to update main to reflect this
change, but we will not show the modification here.

Running the Cythonized Version
After recompiling our code, we can run our latest Cython version and see how it com‐
pares to the Python version:

$ time python run_nbody.py 500000
-0.169075164
-0.169096567
python run_nbody.py 500000 0.54s user 0.01s system 99% cpu 0.550 total

Our Cython version takes about 0.4 seconds to run, and the energy values are in agree‐
ment. This is about 25 times faster than the pure Python version.

Converting to Cython | 75

We can compare this to the runtime of a serial hand-written C version obtained from
the computer language benchmarks game, which we compile with equivalent optimi‐
zation flags:

$ time ./nbody.x 500000
-0.169075164
-0.169096567
./nbody.x 500000 0.14s user 0.00s system 97% cpu 0.150 total

Our performance thus far is within a factor of four of the C version.

A quick comparison of the C version’s advance function and our version reveals one
important difference when the distance is computed—the C version uses sqrt:

double inv_distance = 1.0 / sqrt(dx * dx + dy * dy + dz * dz);
double mag = inv_distance * inv_distance * inv_distance;

while our version uses the ** operator, which Cython translates to pow:

mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))

It is straightforward to convert our version to use sqrt:

ds = dx * dx + dy * dy + dz * dz
mag = dt / (ds * sqrt(ds))

This requires that we type ds as a double and add a cimport line at the top of the file
(Chapter 6):

from libc.math cimport sqrt

With this minor syntactic change, we see another significant performance boost:

$ time python ./run_nbody.py 500000
-0.169075164
-0.169096567
python ./run_nbody.py 500000 0.15s user 0.01s system 99% cpu 0.159 total

This last improvement yields code that is a factor of 3.6 faster than the previous version,
is a factor of 90 faster than the pure-Python version, and brings us within a factor of
1.25 of the pure-C version’s performance.

Summary
This chapter demonstrates how to take numeric-heavy Python code and convert it to
Cython, achieving a factor-of-90 boost in performance. The approach we used is
straightforward and ensures that we get the most payoff for our efforts.

The steps we followed are:

76 | Chapter 4: Cython in Practice: N-Body Simulation

1. Profile the pure-Python version (using the cProfile module or IPython’s %run -p
magic command) to determine where the code spends its time. In this example,
nearly all the runtime is spent in the loop-heavy advance function.

2. Inspect the hotspots for nested for loops, numeric-heavy operations, and nested
Python containers, all of which can be easily converted with Cython to use more
efficient C-level constructs. This example happens to have all of the above.

3. Use Cython to declare C data structures equivalent to the Python data structures
identified above. Create converters (if necessary) to transform Python data to C
data. In the N-body simulation, we created a body_t struct to represent the nested
list-of-tuples-of-lists-of-floats Python data in C, which has better data locality and
significantly more efficient access. We also created two converters, make_cbodies
and make_pybodies, to convert Python to C and C to Python, respectively. Some‐
times these converters are not necessary if Cython can convert the data automati‐
cally.

4. Convert the hotspots to use our C-level data structures. Remove Python data struc‐
tures from nested loops to the extent possible. Ensure all variables used in nested
loops (including the loop variables themselves) are statically typed. Our
make_pybodies and make_cbodies converters, coupled with plenty of cdef decla‐
rations, were sufficient in this example.

5. Test the code to ensure the modifications have not changed the semantics. Profile
again. If performance is not satisfactory, use Cython profiling tools (Chapter 9) to
draw attention to inefficient code.

6. Repeat as necessary.

Another goal of this chapter was to show how to use the components covered in Chap‐
ter 3 in a realistic setting. Remembering the Pareto principle (or the 80/20 rule) is useful:
we need only use Cython in the 20 percent of the code that occupies 80 percent (or
more) of the runtime. The other 80 percent of the code can (and should) remain
unmodified.

Studying this example end-to-end is a good exercise for the Cython newcomer; under‐
standing it fully will solidify many core concepts and techniques useful for any Cython
project.

Summary | 77

CHAPTER 5

Cython and Extension Types

Make everything as simple as possible, but not simpler.
— A. Einstein

In Chapter 3, we covered the fundamentals of what Cython adds to the Python language,
and the power and control those additions provide. That chapter focused on basic data
types and functions. Cython can enhance Python classes as well. Before we learn the
specifics, we must first review the difference between Python classes and extension
types, which will help us understand the what and why of Cython’s approach.

Comparing Python Classes and Extension Types
In Python everything is an object. What does that mean, specifically? At its most basic
level, an object has three things: identity, value, and type. An object’s identity distin‐
guishes it from all others and is provided by the id built-in function. An object’s value
is simply the data associated with it, accessible via dot notation. Typically Python places
an object’s data inside an internal instance dictionary named __dict__. The third es‐
sential attribute of any object is its type, which specifies the behaviors that an object of
that type exhibits. These behaviors are accessible via special functions, called methods.
A type is responsible for creating and destroying its objects, initializing them, and up‐
dating their values when methods are called on the object. Python allows us to create
new types, in Python code, with the class statement.

We will see in this chapter how Cython allows low-level C access to an object’s data and
methods, and what benefits that access provides.

The built-in types—object, list, dict, file, int, float, and so on—are implemented
at the C level via the Python/C API and are incorporated into the Python runtime.

79

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

Usage-wise, built-in types behave just like regular Python classes defined with the class
statement, and the Python type system treats built-in types just like regular classes.

We can also create our own types at the C level directly using the Python/C API; these
are known as extension types. They fold into the type system along with regular Python
classes and built-in types, and are therefore transparent to the end user. When we call
methods on extension type instances, we are running compiled and statically typed
code. In particular, the extension type has fast C-level access to the type’s methods and
the instance’s data. As discussed in Chapter 3, this fast C-level access can lead to sig‐
nificant performance improvements. Implementation-wise, defining an extension
type’s methods and working with a type’s instances is very different from defining new
classes in pure Python. Implementing an extension type directly in C requires expertise
in the Python/C API and is not for the uninitiated.

This is where Cython comes in: Cython makes creating and using extension types as
straightforward as working with pure-Python classes. Extension types are created in
Cython with the cdef class statement, and have much in common with regular Python
classes.

Despite the syntactic similarities, it is important to remember that a cdef class has fast
C-level access to all methods and data. This feature is the most significant difference
between an extension type and a plain Python class defined in a .py module.

Let’s see an example.

Extension Types in Cython
Consider a simple class meant to model particles. Each particle has a mass, an x position,
and a velocity. A simple Particle class in Python would look something like:1

class Particle(object):
 """Simple Particle type."""
 def __init__(self, m, p, v):
 self.mass = m
 self.position = p
 self.velocity = v
 def get_momentum(self):
 return self.mass * self.velocity

This class can be defined in pure Python at the interpreted level, or it can be compiled
by Cython. In both cases, the result is essentially the same. An instance of Particle has
a mass, a position, and a velocity, and users can call its get_momentum method. All
attributes are readable and writeable, and users are free to assign other attributes to
Particle objects outside the class body.

80 | Chapter 5: Cython and Extension Types

https://github.com/cythonbook/examples

When we compile the Particle class to C with cython, the resulting class is just a regular
Python class, not an extension type. When Cython compiles it to C, it is still imple‐
mented with general Python objects using dynamic dispatch for all operations. The
generated code uses the Python/C API heavily and makes the same calls that the inter‐
preter would if this class were defined in pure Python. Because the interpreter overhead
is removed, the Cython version of Particle will have a small performance boost. But
it does not benefit from any static typing, so the Cython code still has to fall back on
dynamic dispatch to resolve types at runtime.

It is trivial to convert the Particle class into an extension type:

cdef class Particle:
 """Simple Particle extension type."""
 cdef double mass, position, velocity
 # ...

There are two additions: cdef is added before the class statement, and static cdef
declarations are added in the class body after the docstring, one for each instance at‐
tribute assigned to in __init__. The __init__ and get_momentum methods remain
unchanged.

The cdef class statement tells Cython to make an extension type rather than a regular
Python class. The cdef type declarations in the class body are not, despite appearances,
class-level attributes. They are C-level instance attributes; this style of attribute decla‐
ration is similar to languages like C++ and Java. All instance attributes must be declared
with cdef at the class level in this way for extension types. If we did not declare all three
of mass, position, and velocity in our Particle extension type, we would get a run‐
time exception inside __init__ when we tried to assign to an undeclared attribute.

Let’s kick the tires. We’ll put our cdef class Particle in a file cython_particle.pyx,
and the regular class Particle in a file python_particle.py. Then, from IPython:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c64290>)

In [2]: import cython_particle

In [3]: import python_particle

Here we use pyximport to compile the cython_particle.pyx file automatically at import
time. We can inspect the two Particle types:

In [4]: python_particle.Particle?
Type: type
String Form:<class 'python_particle.Particle'>
File: [...]/python_particle.py
Docstring: Simple Particle type.
Constructor information:
 Definition:python_particle.Particle(self, m, p, v)

Extension Types in Cython | 81

In [5]: cython_particle.Particle?
Type: type
String Form:<type 'cython_particle.Particle'>
File: [...]/cython_particle.so
Docstring: Simple Particle extension type.

And we see that, besides the fact that the Cython version comes from a compiled library,
they are very similar.

The two types have identical initializers, so creation is the same:

In [6]: py_particle = python_particle.Particle(1.0, 2.0, 3.0)

In [7]: cy_particle = cython_particle.Particle(1.0, 2.0, 3.0)

Calling their get_momentum methods is as we would expect:

In [8]: py_particle.get_momentum()
Out[8]: 3.0

In [9]: cy_particle.get_momentum()
Out[9]: 3.0

We can access all of the py_particle’s attributes:

In [10]: py_particle.mass, py_particle.position, py_particle.velocity
Out[10]: (1.0, 2.0, 3.0)

but none of cy_particle’s:

In [11]: cy_particle.mass, cy_particle.position, cy_particle.velocity
Traceback (most recent call last)
[...]
AttributeError: 'cython_particle.Particle' object has no attribute 'mass'

Furthermore, we can add new attributes to py_particle on the fly, but cy_particle is
locked down:

In [13]: py_particle.charge = 12.0

In [14]: cy_particle.charge = 12.0
Traceback (most recent call last)
[...]
AttributeError: 'cython_particle.Particle' object has no attribute 'charge'

This seems strange—why are the instance attributes in the extension type not accessible
from Python? Why can we add new attributes for py_particle and not cy_particle?
And why do we have to declare them with cdef in the first place?

When an extension type like cython_particle.Particle is instantiated, a C struct is
allocated and initialized. These steps require that the size and fields of that struct be
known at compile time, hence the need to declare all attributes with cdef.

82 | Chapter 5: Cython and Extension Types

In contrast, when python_particle.Particle is instantiated, a Python dictionary is
created and assigned to the instance’s __dict__ attribute, and all other attributes are
stored here with their associated values:

In [15]: py_particle.__dict__
Out[15]: {'charge': 12.0, 'mass': 1.0, 'position': 2.0, 'velocity': 3.0}

C structs are fixed and not open to new members, so no new attributes can be set on an
extension type instance. For an object of a regular Python class, its underlying dictionary
is modifiable and open to new key/value pairs, as we can see with the "charge": 12.0
key/value pair in the preceding IPython output.

Extension type attributes are private by default, and are accessible by the methods of
the class. We saw how get_momentum was able to return the right value in both cases.
An instance of a regular class is wide open—anything can access and modify its
attributes.

Type Attributes and Access Control
In the pure-Python Particle class, attribute access like self.mass goes through a gen‐
eral lookup process that works for any attribute, whether it is an instance attribute, a
method, or a method or data attribute inside a base class. In our example the process
will eventually find the mass key inside the instance’s __dict__ and return its associated
value without much effort. But it is possible for the attribute lookup machinery to go
through several levels of indirection to find its target. As always, this generality comes
with performance overhead.

Methods defined in cdef class extension types have full access to all instance attributes.
Furthermore, cython will translate any accesses like self.mass or self.velocity into
low-level accesses to C-struct fields. This bypasses the general lookup process for pure-
Python classes, and can lead to significant performance improvements.

But what if we want to be able to access instance attributes of extension types? It is
straightforward to have Cython make instance attributes read-only, or readable and
writeable.

First, let’s see an example with read-only attributes. We include the readonly declaration
along with the instance attributes, like this:

cdef class Particle:
 """Simple Particle extension type."""
 cdef readonly double mass, position, velocity
 # ...

If we wanted just the mass attribute to be accessible from Python, but position and
velocity to remain private, we would say:

Type Attributes and Access Control | 83

cdef class Particle:
 """Simple Particle extension type."""
 cdef readonly double mass
 cdef double position, velocity
 # ...

After making these changes, we have to recompile the extension module, which means
reimporting it from a new interpreter session with pyximport:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c64290>)

In [2]: import cython_particle

The mass attribute is now accessible from Python:

In [3]: cy_particle = cython_particle.Particle(1.0, 2.0, 3.0)

In [4]: cy_particle.mass
Out[4]: 1.0

But it is not modifiable:

In [5]: cy_particle.mass = -3.0
Traceback (most recent call last)
[...]
AttributeError: attribute 'mass' of 'cython_particle.Particle'
 objects is not writable

If we want to make an attribute both readable and writeable from Python, we can use
the public attribute:

cdef class Particle:
 """Simple Particle extension type."""
 cdef public double mass
 cdef readonly double position
 cdef double velocity
 # ...

Here we have made mass readable and writeable with public, position read-only, and
velocity private.

After recompiling via pyximport, we see that we can now access both the mass and
position attributes:

In [3]: cy_particle = cython_particle.Particle(1.0, 2.0, 3.0)

In [4]: cy_particle.mass
Out[4]: 1.0

In [5]: cy_particle.mass, cy_particle.position
Out[5]: (1.0, 2.0)

and we can modify the mass as well:

84 | Chapter 5: Cython and Extension Types

In [6]: cy_particle.mass = 1e-6

When calling the get_momentum method, Cython still uses fast C-level direct access, and
extension type methods essentially ignore the readonly and public declarations. These
exist only to allow and control access from Python.

C-Level Initialization and Finalization
The fact that we have a C struct behind every extension type instance has other impli‐
cations, particularly for object creation and initialization. When Python calls
__init__, the self argument is required to be a valid instance of that extension type.
When __init__ is called, it typically initializes the attributes on the self argument. At
the C level, before __init__ is called, the instance’s struct must be allocated, and all
struct fields must be in a valid state, ready to accept initial values.

Cython adds a special method named __cinit__ whose responsibility is to perform C-
level allocation and initialization. For the Particle extension type declared earlier,
__init__ can take on this role, because the fields are all double scalars and require no
C-level allocations. But it is possible, depending on how an extension type is subclassed
or if there are alternative constructors, for __init__ to be called multiple times during
object creation, and there are other situations where __init__ is bypassed entirely.
Cython guarantees that __cinit__ is called exactly once and that it is called before
__init__, __new__, or alternative Python-level constructors (e.g., classmethod con‐
structors). Cython passes any initialization arguments into __cinit__.

For example, say we have an extension type whose instances have an internal C array,
dynamically allocated:

cdef class Matrix:
 cdef:
 unsigned int nrows, ncols
 double *_matrix

The correct place to put self._matrix’s dynamic allocation is in a __cinit__ method:

cdef class Matrix:
 cdef:
 unsigned int nrows, ncols
 double *_matrix
 def __cinit__(self, nr, nc):
 self.nrows = nr
 self.ncols = nc
 self._matrix = <double*>malloc(nr * nc * sizeof(double))
 if self._matrix == NULL:
 raise MemoryError()

If self._matrix were allocated inside __init__ instead, and __init__ were never
called—which can occur with an alternate classmethod constructor, for instance—then

C-Level Initialization and Finalization | 85

any method using self._matrix would lead to ugly segmentation faults. Conversely, if
__init__ were called twice—perhaps due to inconsistent use of super in a class hier‐
archy—then a memory leak would result (and would be particularly difficult to track
down).

What about cleanup? Cython also supports C-level finalization through the
__dealloc__ special method. This method’s responsibility is to undo what __cinit__
did during creation. For our Matrix extension type, we should add a __dealloc__ that
frees the self._matrix array:

cdef class Matrix:
 cdef:
 unsigned int nrows, ncols
 double *_matrix
 def __cinit__(self, nr, nc):
 self.nrows = nr
 self.ncols = nc
 self._matrix = <double*>malloc(nr * nc * sizeof(double))
 if self._matrix == NULL:
 raise MemoryError()
 def __dealloc__(self):
 if self._matrix != NULL:
 free(self._matrix)

If defined, Cython ensures that __dealloc__ is called once during finalization. In this
example __dealloc__ need only check that self._matrix is non-null and free it to
ensure no memory leaks.

Now that we have covered the essential pieces for creation and finalization of extension
type instances, let’s focus on extension type methods. Cython’s cdef and cpdef decla‐
rations work there as well.

cdef and cpdef Methods
The concepts we learned in Chapter 3 about def, cdef, and cpdef functions also apply
to extension type methods. Note that we cannot use cdef and cpdef to define methods
on non-cdef classes; doing so is a compile-time error.

A cdef method has C calling semantics, just as cdef functions do: all arguments are
passed in as is, so no type mapping from Python to C occurs. This provides cdef methods
with a performance boost over their def counterparts, which always have to accept and
return Python objects of one type or another. This also means that a cdef method is
accessible only from other Cython code and cannot be called from Python.

A cpdef method is particularly useful. As we can infer from what we know about cpdef
functions, a cpdef method is callable both from external Python code and from other
Cython code. When it is called from Cython, no marshalling to and from Python objects

86 | Chapter 5: Cython and Extension Types

takes place, so it is as efficient as can be. However, the argument and return types have
to be automatically convertible from and to Python objects, respectively, which restricts
the allowed types somewhat (no pointer types, for example).

For example, we can declare the get_momentum method on the Particle extension type
to be a cpdef method instead:

cdef class Particle:
 """Simple Particle extension type."""
 cdef double mass, position, velocity
 # ...
 cpdef double get_momentum(self):
 return self.mass * self.velocity

Say we have a function add_momentums:

def add_momentums(particles):
 """Returns the sum of the particle momentums."""
 total_mom = 0.0
 for particle in particles:
 total_mom += particle.get_momentum()
 return total_mom

This could be defined in interpreted Python, or it could be compiled and run by
Cython— in either case, the call to get_momentum is a fully general Python attribute
lookup and call, because Cython does not know that particles is a list of Particle
objects.

Calling add_momentums in the preceding example on a list of 1,000 Particle objects
takes approximately 65 microseconds.

When Python calls get_momentum on a Particle object, the get_momentum Python
wrapper is used, and the correct packing and unpacking from Python object to under‐
lying Particle struct occurs automatically.

If we add typing information, then Cython will be able to generate faster code:

def add_momentums_typed(list particles):
 """Returns the sum of the particle momentums."""
 cdef:
 double total_mom = 0.0
 Particle particle
 for particle in particles:
 total_mom += particle.get_momentum()
 return total_mom

Note that we typed the particles argument as a list, total_mom as a double, and,
crucially, the loop indexing variable particle as a Particle.

Because particle is a statically typed Particle and get_momentum is a cpdef method,
when get_momentum is called in add_momentums_typed, no Python objects are involved.

cdef and cpdef Methods | 87

2. Because both the get_momentum and get_momentum_c methods are trivial, these performance measures are
skewed heavily toward function call overhead. For methods that perform more significant calculations, the
performance difference between the cdef and cpdef versions will be insignificant, and the flexibility that
cpdef provides becomes a more relevant consideration.

Even the in-place sum is a C-only operation, because total_mom is a statically typed C
double.

This typed version takes about 7 microseconds to run on the same list as before, indi‐
cating a tenfold speedup over the untyped version. To see the effect of the cpdef over
the def method, we can remove the Particle particle declaration, forcing Cython
to use Python calling semantics on particle.get_momentum(). The result isn’t pretty:
71 microseconds, which is slower than the all-Python version! Typing the particle
loop variable here yields the most significant performance improvement; typing
particles and total_mom has less of an effect.

There is one last comparison to make: what if we make get_momentum a cdef method?
To keep things separate, we will define another method, get_momentum_c:

cdef class Particle:
 """Simple Particle extension type."""
 cdef double mass, position, velocity
 # ...
 cpdef double get_momentum(self):
 return self.mass * self.velocity
 cdef double get_momentum_c(self):
 return self.mass * self.velocity

We will have to modify add_momentums_typed as well; we will call the new version
add_momentums_typed_c for clarity:

def add_momentums_typed_c(list particles):
 """Returns the sum of the particle momentums."""
 cdef:
 double total_mom = 0.0
 Particle particle
 for particle in particles:
 total_mom += particle.get_momentum_c()
 return total_mom

This version has the best performance: approximately 4.6 microseconds, another 40
percent boost over the add_momentums_typed version. The downside is that
get_momentum_c is not callable from Python code, only Cython.2

What explains this additional performance improvement? To answer that, we will have
to understand the basics of inheritance, subclassing, and polymorphism with extension
types.

88 | Chapter 5: Cython and Extension Types

3. Note that we use the Python 2 syntax for calling super here, but Cython will generate code that is compatible
with either Python 2 or Python 3.

Inheritance and Subclassing
An extension type can subclass a single base type, and that base type must itself be a
type implemented in C—either a built-in type or another extension type. If the base
type is a regular Python class, or if the extension type attempts to inherit from multiple
base types, a cython compile-time error will result.

For example, consider a subclass of Particle, called CParticle, that stores the particle’s
momentum rather than computing it on the fly. We do not want to duplicate work done
in Particle, so we subclass it:3

cdef class CParticle(Particle):
 cdef double momentum
 def __init__(self, m, p, v):
 super(CParticle, self).__init__(m, p, v)
 self.momentum = self.mass * self.velocity
 cpdef double get_momentum(self):
 return self.momentum

Because a CParticle is a (more specific) Particle, everywhere we use a Particle, we
should be able to substitute in a CParticle without any modification to the code, all
while we revel in the Platonic beauty of polymorphism. In our add_momentums or
add_momentums_typed functions defined in the preceding examples, we can pass in a
list of CParticles instead. The add_momentums function does everything with dynamic
Python variables, so everything follows Python semantics there. But
add_momentums_typed expects the elements of the list to be Particle instances. When
CParticles are passed in, the right version of get_momentum is resolved, bypassing the
Python/C API.

We can subclass Particle in pure Python as well. Consider PyParticle:

class PyParticle(Particle):
 def __init__(self, m, p, v):
 super(PyParticle, self).__init__(m, p, v)
 def get_momentum(self):
 return super(PyParticle, self).get_momentum()

The PyParticle class cannot access any private C-level attributes or cdef methods. It
can override def and cpdef methods defined on Particle, as we have done with
get_momentum. We can pass add_momentums_typed a list of PyParticles as well; doing
so takes about 340 microseconds per call, making it about five times slower than using
Particle objects. Crossing the Cython/Python language boundary polymorphically is
nice, but it does have overhead.

Inheritance and Subclassing | 89

Because a cdef method is not accessible or overrideable from Python, it does not have
to cross the language boundary, so it has less call overhead than a cpdef equivalent. This
is a relevant concern only for small functions where call overhead is non-negligible. For
methods that perform significant calculations, the performance difference between
cdef and cpdef is less a concern.

Casting and Subclasses
When working with a dynamically typed object, Cython cannot access any C-level data
or methods on it. All attribute lookup must be done via the Python/C API, which is
slow. If we know the dynamic variable is or may possibly be an instance of a built-in
type or an extension type, then it is worth casting to the static type. Doing so allows
Cython to access C-level attributes and methods, and it can do so more efficiently.
Further, Cython can also access Python-level attributes and cpdef methods directly
without going through the Python/C API.

There are two ways to perform this casting: either by creating a statically typed variable
of the desired type and assigning the dynamic variable to it, or by using Cython’s casting
operator, covered briefly in Chapter 3.

For example, say we are working with an object p that might be an instance of Particle
or one of its subclasses. All Cython knows about p is that it is a Python object. We can
call get_momentum on it, which will work if p has such a method and fail with an At
tributeError otherwise. Because p is a dynamic variable, Cython will access
get_momentum by looking it up in a Python dictionary, and if successful, PyOb
ject_Call will execute the method. But if we cast it to a Particle explicitly, the call to
get_momentum will be much faster:

cdef Particle static_p = p
print static_p.get_momentum()
print static_p.velocity

The assignment to static_p will raise a TypeError exception if p is not an instance of
Particle or its subclasses, so this is safe. The call static_p.get_momentum will use
direct access to the get_momentum cpdef method. It also allows access to the private
velocity attribute, which is not available via p.

Cython uses general Python method lookups on dynamically typed
objects. This will fail with an AttributeError if the method is de‐
clared cdef. To ensure fast access to cpdef methods, or to allow any
access to cdef methods, we must provide static type information for
the object.

Cython also supports the casting operator, and we can use it to achieve the same result:

90 | Chapter 5: Cython and Extension Types

print (<Particle>p).get_momentum()
print (<Particle>p).velocity

This removes the need to create a temporary variable as in the previous example. The
cast is enclosed in parentheses due to Cython’s precedence rules. Because we use a raw
cast to a Particle object in this example, no type checking is performed for performance
reasons. It is unsafe if p is not an instance of Particle, which may lead to a segmentation
fault. If there is a possibility that p is not a Particle, then using the checked cast is safer:

print (<Particle?>p).get_momentum()
print (<Particle?>p).velocity

If p is not a Particle, this example will raise a TypeError. The tradeoff is that a checked
cast calls into the Python/C API and incurs runtime overhead, trading performance for
safety.

Extension Type Objects and None
Consider a simple function dispatch:

def dispatch(Particle p):
 print p.get_momentum()
 print p.velocity

If we call dispatch and pass a non-Particle object, then we would expect to get a
TypeError. Usually, this is the case:

dispatch(Particle(1, 2, 3)) # OK
dispatch(CParticle(1, 2, 3)) # OK
dispatch(PyParticle(1, 2, 3)) # OK
dispatch(object()) # TypeError

However, Cython treats None specially—even though it is not an instance of Particle,
Cython allows it to be passed in as if it were. This is analogous to the NULL pointer in C:
it is allowed wherever a C pointer is expected, but doing anything other than checking
whether it is NULL will result in a segmentation fault or worse.

Calling dispatch with None does not result in a TypeError:

dispatch(None) # Segmentation fault!

The reason for the segmentation fault when None is passed to dispatch is because
dispatch (unsafely) accesses the cpdef function get_momentum and the private attribute
velocity, both of which are part of Particle’s C interface. Python’s None object essen‐
tially has no C interface, so trying to call a method on it or access an attribute is not
valid. To make these operations safe, dispatch could check if p is None first:

def dispatch(Particle p):
 if p is None:
 raise TypeError("...")

Inheritance and Subclassing | 91

 print p.get_momentum()
 print p.velocity

This is such a common operation that Cython provides special syntax for it:

def dispatch(Particle p not None):
 print p.get_momentum()
 print p.velocity

This version of dispatch will do the right thing when passed None, at the expense of
some up-front type checking. If there is any possibility that a function or method ar‐
gument might be None, then it is our responsibility to guard against it if accessing any
C-level attributes or methods on the object. Not doing so will result in ugly segmentation
faults or data corruption. If we access only Python-level methods (i.e., def methods)
and Python-level attributes (public or readonly attributes, for example) on the object,
then an exception will be raised, as the Python/C API will handle things for us.

Many see the need for the not None clause as inconvenient; this feature of Cython is
often debated. Fortunately, it is straightforward to write None-safe code with the
not None clause in the function’s argument declaration.

Cython also provides a nonecheck compiler directive—off by default for performance
reasons—that makes all function and method calls None-safe. To enable None checking
globally for an extension module, we can either place a directive comment toward the
beginning of the file:

cython: nonecheck=True

or set nonecheck to True from the command line during compilation:

$ cython --directive nonecheck=True source.pyx

Extension Type Properties in Cython
Python properties are handy and very powerful, allowing precise control over attribute
access and on-the-fly computation.

All this time, the Particle extension type has had a get_momentum method, but any
Python programmer would berate us for having a getter method like that; the right way
to do it is to either expose momentum directly or make a property instead. Doing so in
pure Python is simple with the property built-in function:

class Particle(object):
 # ...
 def _get_momentum(self):
 return self.mass * self.velocity
 momentum = property(_get_momentum)

92 | Chapter 5: Cython and Extension Types

Accessing p.momentum (no parentheses!) on a Particle instance p calls _get_momentum
automatically. It is not possible to set or delete p.momentum because no setter or deleter
was passed to property when the momentum property was defined.

Cython has different syntax for extension type properties, but it achieves the same end:

cdef class Particle:
 """Simple Particle extension type."""
 cdef double mass, position, velocity
 # ...
 property momentum:
 """The momentum Particle property."""
 __get__(self):
 """momentum's getter"""
 return self.mass * self.velocity

We can now access p.momentum from either Python code or Cython code; doing so calls
the underlying __get__() momentum getter. The property and __get__ docstrings are
optional; if present, they can be extracted by automatic documentation generators, and
are equivalent to passing in a doc argument to the Python property built-in function.
If Cython knows the static type of the object in question, the property access will be
efficient and bypass the Python/C API. Like the pure-Python property in the initial
example, this is a read-only property.

For the sake of this example, suppose we want to be able to get and set a Particle’s
momentum. We can add a __set__ property method to do so:

cdef class Particle:
 """Simple Particle extension type."""
 # ...
 property momentum:
 """The momentum Particle property."""
 def __get__(self):
 """momentum's getter"""
 return self.mass * self.velocity
 def __set__(self, m):
 """momentum's setter"""
 self.velocity = m / self.mass

We arbitrarily decide that setting the momentum will modify the velocity and leave the
mass unchanged. This allows p.momentum to be assigned to:

In [3]: p = cython_particle.Particle(1, 2, 3)

In [4]: p.momentum
Out[4]: 3.0

In [5]: p.momentum = 4.0

In [6]: p.momentum
Out[6]: 4.0

Extension Type Properties in Cython | 93

4. This behavior applies to all extension types, not just extension types defined via Cython.

If it makes sense to do so, we can also define a __del__ property method, which controls
property deletion. If any one of __get__, __set__, or __del__ is not defined, then that
operation is not allowed.

To finish our treatment of extension types in Cython, we should cover how extension
type special methods are different from their pure-Python counterparts.

Special Methods Are Even More Special
When providing support for operator overloading with a Cython extension type, we
have to define a special method; that is, a method of a specific name with leading and
trailing double underscores. We previously covered the __cinit__, __init__, and
__dealloc__ special methods and saw how they handle C-level initialization, Python-
level initialization, and finalization, respectively. Extension types do not support the
__del__ special method; that is the role of __dealloc__.

Arithmetic Methods
To support the in-place + operator for a pure-Python class C, we define an
__add__(self, other) method. The operation c + d is transformed into
C.__add__(c, d) when c is an instance of the C class. If C does not know how to add
itself to the other argument, then it returns NotImplemented. In this case, the Python
interpreter then calls type(d).__radd__(d, c) to give d’s class a chance to add itself
to a C instance.

For extension types, the situation is different.4 Extension types do not support
__radd__; instead, they (effectively) overload __add__ to do the job of both the regular
__add__ and __radd__ in one special method. This means that, for a Cython-defined
extension type E, __add__ will be called when the expression e + f is evaluated and e
is an E instance. In this case, the arguments to __add__ are e and f, in that order. The
__add__ method will also be called when the expression f + e is evaluated and f’s
__add__ method returns NotImplemented, indicating that f cannot handle an E instance.
In this case, E.__add__ is called with f and e as arguments, in that order! So __add__
may be called with an arbitrary type as the first argument, not an instance of the E
class; because of this possibility, it is misleading to name its first argument self.

Here is the proper implementation of __add__ for a simple Cython extension type that
can be added to integers:

cdef class E:
 """Extension type that supports addition."""
 cdef int data

94 | Chapter 5: Cython and Extension Types

 def __init__(self, d):
 self.data = d
 def __add__(x, y):
 # Regular __add__ behavior
 if isinstance(x, E):
 if isinstance(y, int):
 return (<E>x).data + y
 # __radd__ behavior
 elif isinstance(y, E):
 if isinstance(x, int):
 return (<E>y).data + x
 else:
 return NotImplemented

Cython does not automatically type either argument to __add__, making the
isinstance check and cast necessary to access each E instance’s internal .data attribute.

Let’s place the preceding code block in special_methods.pyx and try it out from IPython:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c65290>)

In [2]: import special_methods

In [3]: e = special_methods.E(100)

In [4]: e + 1
Out[4]: 101

In [5]: 1 + e
Out[5]: 101

The first addition takes the first branch of E.__add__, and the second addition takes
the second branch. What about the error cases?

In [6]: e + 1.0
Traceback (most recent call last):
[...]
TypeError: unsupported operand type(s) for +:
 'special_methods.E' and 'float'

For this case, E.__add__ returns NotImplemented, and the built-in float type tries to
do an __radd__ with an E instance as the left argument. Not knowing how to add itself
to an E object, it again returns NotImplemented, and Python then raises a TypeError.

One more case to consider:

In [7]: 1.0 + e
Traceback (most recent call last):
[...]
TypeError: unsupported operand type(s) for +:
 'float' and 'special_methods.E'

Special Methods Are Even More Special | 95

For this case, float’s __add__ was called, realized it did not know how to handle E
instances, and returned NotImplemented. Python then called E.__add__(1.0, e) (or
the equivalent), which also returned NotImplemented, causing Python to raise the
TypeError.

Phew. That rounds it out for __add__. Cython follows the same pattern for all arithmetic
special methods, so what we have learned about __add__ here applies elsewhere.

The in-place operations like __iadd__ always take an instance of the class as the first
argument, so self is an appropriate name in these cases. The exception to this is
__ipow__, which may be called with a different order of arguments, like __add__.

Rich Comparisons
Cython extension types do not support the individual comparison special methods like
__eq__, __lt__, and __le__. Instead, Cython provides a single (some would say cryptic)
method, __richcmp__(x, y, op), that takes an integer third argument to specify which
comparison operation to perform. The correspondence between integer argument and
comparison operation is detailed in Table 5-1.

Table 5-1. richcmp comparison operations
Integer argument Comparison

Py_LT <

Py_LE <=

Py_EQ ==

Py_NE !=

Py_GT >

Py_GE >=

In Table 5-1, the integer arguments are compile-time constants declared in the Python
runtime object.h header. We can access these constants via a cimport statement, the
details of which are covered in Chapter 6.

For example, to support comparisons with an extension type, we would do the following:

from cpython.object cimport Py_LT, Py_LE, Py_EQ, Py_GE, Py_GT, Py_NE

cdef class R:
 """Extension type that supports rich comparisons."""
 cdef double data
 def __init__(self, d):
 self.data = d

 def __richcmp__(x, y, int op):
 cdef:

96 | Chapter 5: Cython and Extension Types

 R r
 double data

 # Make r always refer to the R instance.
 r, y = (x, y) if isinstance(x, R) else (y, x)

 data = r.data
 if op == Py_LT:
 return data < y
 elif op == Py_LE:
 return data <= y
 elif op == Py_EQ:
 return data == y
 elif op == Py_NE:
 return data != y
 elif op == Py_GT:
 return data > y
 elif op == Py_GE:
 return data >= y
 else:
 assert False

The behavior is as expected:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c7d290>)

In [2]: from special_methods import R

In [3]: r = R(10)

In [4]: r < 20 and 20 > r
Out[4]: True

In [5]: r > 20 and 20 < r
Out[5]: False

In [6]: 0 <= r <= 100
Out[6]: True

In [7]: r == 10
Out[7]: True

In [8]: r != 10
Out[8]: False

In [9]: r == 20
Out[9]: False

In [10]: 20 == r
Out[10]: False

Special Methods Are Even More Special | 97

Note that if a type supports rich comparisons, then chained comparisons like 0 <= r
<= 100 are automatically supported as well.

One last major difference between regular Python and Cython extension types is iterator
support.

Iterator Support
To make an extension type iterable, we define __iter__ on it, just as in regular
Python. To make an extension type an iterator, we define a __next__ special method
on it, as we would in Python 3. This is different from a pure-Python object, where we
would define a next method instead. Cython will expose __next__ as next to Python.

A (perhaps contrived) example:

cdef class I:
 cdef:
 list data
 int i
 def __init__(self):
 self.data = range(100)
 self.i = 0
 def __iter__(self):
 return self
 def __next__(self):
 if self.i >= len(self.data):
 raise StopIteration()
 ret = self.data[self.i]
 self.i += 1
 return ret

Because I defines __iter__, instances of I can be used in for loops:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c7e290>)

In [2]: from special_methods import I

In [3]: i = I()

In [4]: s = 0

In [5]: for x in i:
 ...: s += x
 ...:

In [6]: s
Out[6]: 4950

Because I defines __next__, instances can be used where an iterator is required:

98 | Chapter 5: Cython and Extension Types

In [15]: it = iter(I())

In [16]: it.next()
Out[16]: 0

In [17]: next(it)
Out[17]: 1

This covers the primary differences between Cython special methods and their usual
semantics in Python. For a full list of special methods, please refer to the relevant sections
in Cython’s online documentation.

Summary
The easiest way to create Python extension types, without exception, is through Cython.
Trying to do so in straight C via the Python/C API is a useful exercise, but it requires a
certain facility with the Python object model and C API that is hard to come by.

Extension types are another instance where Cython melds C-level performance with a
Python-like look and feel. A Cython-defined extension type

• allows easy and efficient access to an instance’s C-level data and methods;
• is memory efficient;
• allows control over attribute visibility;
• can be subclassed from Python;
• works with existing built-in types and other extension types.

In future chapters we will make use of extension types liberally. In particular, we will
cover in Chapters 7 and 8 how to use extension types to wrap C structs, functions, and
C++ classes to provide nice object-oriented interfaces to external libraries.

Summary | 99

http://docs.cython.org/

CHAPTER 6

Organizing Cython Code

Namespaces are one honking great idea—let’s do more of those!
— T. Peters

 “The Zen of Python”

Python provides modules and packages to help organize a project. This allows us to
group functions, classes, and variables into logical units, making a project easier to
understand and navigate. Modules and packages also make it easier to reuse code. In
Python, we use the import statement to access functions, objects, and classes inside
other modules and packages.

Cython also allows us to break up our project into several modules. It fully supports the
import statement, which has the same meaning as in Python. This allows us, at runtime,
to access Python objects defined in external pure-Python modules or Python-accessible
objects defined in other extension modules.

If that were the end of the story, it would not allow two Cython modules to access each
other’s cdef or cpdef functions, ctypedefs, or structs, and it would not allow C-level
access to other extension types.

To address this, Cython provides three file types that help organize the Cython-specific
and C-level parts of a project. Until now we have been working with Cython source files
with a .pyx extension, known as implementation files. Here we will see how these files
work with a new Cython file type called definition files, which have a .pxd extension.
We will also look at the third Cython file type, with a .pxi extension; these are called
include files.

In addition to the three file types, Cython has a cimport statement that provides compile-
time access to C-level constructs, and it looks for these constructs’ declarations inside
definition (.pxd) files.

101

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

This chapter covers the details of the cimport statement; the interrelationship be‐
tween .pyx files, .pxd files, and .pxi files; and how to use them all to structure larger
Cython projects. With the cimport statement and the three file types, we have the tools
to effectively organize our Cython projects without compromising performance.

Cython Implementation (.pyx) and Declaration (.pxd) Files
We have been working with implementation files all along. As noted earlier, an imple‐
mentation file typically has the extension .pyx, although we can treat a pure-Python file
with the extension .py as an implementation file as well. If we have a small Cython project
and no other code needs to access C-level constructs in it, then a single implementation
file is sufficient. But as soon as we want to share its C-level constructs, we need to create
a definition file.

Suppose we have an implementation file, simulator.pyx, meant to run some sort of
physical simulation—we keep the details intentionally vague. Inside simulator.pyx we
find the following:

• A ctypedef
• A cdef class named State to hold the simulation state
• Two def functions, setup and output, to initialize the simulation and to report or

visualize the results
• Two cpdef functions, run and step, to drive the simulation and to advance one

time step

An outline of our implementation file is:1

ctypedef double real_t

cdef class State:
 cdef:
 unsigned int n_particles
 real_t *x
 real_t *vx

 def __cinit__(...):
 # ...
 def __dealloc__(...):
 # ...
 cpdef real_t momentum(self):
 # ...

def setup(input_fname):

102 | Chapter 6: Organizing Cython Code

https://github.com/cythonbook/examples

 # ...

cpdef run(State st):
 # ...calls step function repeatedly...

cpdef int step(State st, real_t timestep):
 # ...advance st one time step...

def output(State st):
 # ...

The State extension type has the regular __cinit__ and __dealloc__ methods for
allocation and deallocation, a cpdef method called momentum, and perhaps other def
methods not listed here.

Because everything is in one file, all functions have access to the C-level attributes of
the simulation state, so there is no Python overhead when we are accessing or manip‐
ulating it. Because step is a cpdef function, when run calls it, it can access its fast C
implementation, bypassing its slower Python wrapper.

As we develop the simulation, the simulator.pyx extension module gains more func‐
tionality and becomes harder to maintain. To make it modular, we need to break it up
into logical subcomponents.

To do so, first we need to create a simulator.pxd definition file. In it we place the decla‐
rations of C-level constructs that we wish to share:

ctypedef double real_t

cdef class State:
 cdef:
 unsigned int n_particles
 real_t *x
 real_t *vx

 cpdef real_t momentum(self)

cpdef run(State st)

cpdef int step(State st, real_t timestep)

Because definition files are meant for compile-time access, note that we put only C-level
declarations in it. No Python-only declarations—like def functions—are allowed, and
it is a compile-time error to put them here. These functions are accessible at runtime,
so they are just declared and defined inside the implementation file.

Our implementation file, simulator.pyx, also needs to change. The simulator.pxd and
simulator.pyx files, because they have the same base name, are treated as one namespace
by Cython. We cannot repeat any of the simulator.pxd declarations in the implemen‐
tation file, as doing so would be a compilation error.

Cython Implementation (.pyx) and Declaration (.pxd) Files | 103

Declarations and Definitions
What makes something a Cython declaration as opposed to a Cython definition? Syn‐
tactically, a declaration for a function or method includes everything for the function
or method’s signature: the declaration type (cdef or cpdef); the function or method’s
name; and everything in the argument list, including the parentheses. It does not include
the terminating colon. For a cdef class, the declaration includes the cdef class line
(colon included) as well as the extension type’s name, all attribute declarations, and all
method declarations.

A Cython definition is everything required for that construct’s implementation. The
definition for a function or method repeats the declaration as part of the definition (i.e.,
the implementation); the definition for a cdef class does not redeclare the attribute
declarations.

Our implementation file is now:

cdef class State:

 def __cinit__(...):
 # ...
 def __dealloc__(...):
 # ...
 cpdef real_t momentum(self):
 # ...

def setup(input_fname):
 # ...

cpdef run(State st):
 # ...calls step function repeatedly...

cpdef int step(State st, real_t timestep):
 # ...advance st one time step...

def output(State st):
 # ...

The ctypedef and the State type’s attributes have been moved to the definition file, so
they are removed from the implementation file. The definitions of all objects, whether
C level or Python level, go inside the implementation file. The def functions and meth‐
ods remain. When compiling simulator.pyx, the cython compiler will automatically
detect the simulator.pxd definition file and use its declarations.

What belongs inside a definition file? Essentially, anything that is meant to be publicly
accessible to other Cython modules at the C level. This includes:

104 | Chapter 6: Organizing Cython Code

• C type declarations—ctypedef, struct, union, or enum (Chapter 7)
• Declarations for external C or C++ libraries (i.e., cdef extern blocks—Chapters 7

and 8)
• Declarations for cdef and cpdef module-level functions
• Declarations for cdef class extension types
• The cdef attributes of extension types
• Declarations for cdef and cpdef methods
• The implementation of C-level inline functions and methods

A definition file cannot contain:

• Implementations of Python or non-inline C functions or methods
• Python class definitions (i.e., regular classes)
• Executable Python code outside of IF or DEF macros

What functionality does our .pxd file provide? Now an external implementation file can
access all C-level constructs inside simulator.pyx via the cimport statement.

The cimport Statement
Suppose another version of the simulation—in a separate improved_simulator.pyx im‐
plementation file—wants to work with our simulator, using the same setup and step
functions but a different run function, and needs to subclass our State extension type:

from simulator cimport State, step, real_t
from simulator import setup as sim_setup

cdef class NewState(State):
 cdef:
 # ...extra attributes...
 def __cinit__(self, ...):
 # ...
 def __dealloc__(self):
 # ...

def setup(fname):
 # ...call sim_setup and tweak things slightly...

cpdef run(State st):
 # ...improved run that uses simulator.step...

Inside improved_simulator.pyx, the first line uses the cimport statement to access the
State extension type, the step cpdef function, and the real_t ctypedef. This access

The cimport Statement | 105

is at the C level and occurs at compile time. The cimport statement looks for the sim‐
ulator.pxd definition file, and only the declarations there are cimportable. This is in
contrast to the second line in the file, which uses the import statement to access the
setup def function from the simulator extension module. The import statement works
at the Python level and the import occurs at runtime.

The cimport statement has the same syntax as the import statement. We can cimport
the .pxd filename and use it as a module-like namespace:

cimport simulator

...
cdef simulator.State st = simulator.State(params)
cdef simulator.real_t dt = 0.01
simulator.step(st, dt)

We can provide an alias when cimporting the definition file:

cimport simulator as sim

...
cdef sim.State st = sim.State(params)
cdef sim.real_t dt = 0.01
sim.step(st, dt)

We can also provide an alias to specific cimported declarations with the as clause:

from simulator cimport State as sim_state, step as sim_step

All of these forms of cimport should be familiar from Python’s import statement.

It is a compile-time error to cimport a Python-level object like the setup function.
Conversely, it is a compile-time error to import a C-only declaration like real_t. We
are allowed to import or cimport the State extension type or the step cpdef function,
although cimport is recommended. If we were to import rather than cimport extension
types or cpdef functions, we would have Python-only access. This blocks access to any
private attributes or cdef methods, and cpdef methods and functions use the slower
Python wrapper.

A definition file can contain cdef extern blocks. It is useful to group such declarations
inside their own .pxd files for use elsewhere. Doing so provides a useful namespace to
help disambiguate where a function is declared.

For example, the Mersenne Twister random-number generator (RNG) header file has
a few functions that we can declare inside a _mersenne_twister.pxd definition file:

cdef extern from "mt19937ar.h":
 # initializes mt[N] with a seed
 void init_genrand(unsigned long s)

 # generates a random number on [0,0xffffffff]-interval

106 | Chapter 6: Organizing Cython Code

 unsigned long genrand_int32()

 # generates a random number on [0,0x7fffffff]-interval
 long genrand_int31()

 # generates a random number on [0,1]-real-interval
 double genrand_real1()

 # generates a random number on [0,1)-real-interval
 double genrand_real2()

 # generates a random number on (0,1)-real-interval
 double genrand_real3()

 # generates a random number on [0,1) with 53-bit resolution
 double genrand_res53()

Now any implementation file can simply cimport the necessary function:

from _mersenne_twister cimport init_genrand, genrand_real3

or, using an alias:

cimport _mersenne_twister as mt

mt.init_genrand(42)
for i in range(len(x)):
 x[i] = mt.genrand_real1()

Several definition files come packaged with Cython itself.

Predefined Definition Files
Conveniently, Cython comes with several predefined definition files for often-used C,
C++, and Python header files. These are grouped into definition file packages and are
located in the Includes directory underneath the main Cython source directory. There
is a package for the C standard library, named libc, that contains .pxd files for the stdlib,
stdio, math, string, and stdint header files, among others. There is also a libcpp decla‐
ration package with .pxd files for common C++ standard template library (STL) con‐
tainers such as string, vector, list, map, pair, and set. Python-side, the cpython
declaration package has .pxd files for the C header files found in the CPython source
distribution, providing easy access to Python/C API functions from Cython. The last
declaration package we will mention here is numpy, which provides access to the NumPy/
C API. It is covered in Chapter 10.

Common patterns using cimport and their effects are described next.

Using cimport with a module in a package
from libc cimport math
math.sin(3.14)

The cimport Statement | 107

The from ... cimport ... pattern used here imports the module-like math namespace
from the libc package, and allows dotted access to C functions declared in the math.h
C standard library.

Using cimport with an object from a dotted module name
from libc.math cimport sin
sin(3.14)

This form allows cimporting the C sin function from libc.math in a Python-like way,
but it is important to remember that the call to sin will call the fast C version.

Multiple named cimports
from libc.stdlib cimport rand, srand, qsort, malloc, free
cdef int *a = <int*>malloc(10 * sizeof(int))

This imports multiple C functions from C’s stdlib.h standard library header.

Using cimport with an alias
from libc.string cimport memcpy as c_memcpy

In this form, we can use c_memcpy as an alias for memcpy.

Using cimport with C++ STL template classes
from libcpp.vector cimport vector
cdef vector[int] *vi = new vector[int](10)

Cython supports cimporting C++ classes from the C++ STL.

If we import and cimport different functions with the same name, Cython will issue a
compile-time error. For example, the following is not valid:

from libc.math cimport sin
from math import sin

It is simple to fix with an alias, however:

from libc.math cimport sin as csin
from math import sin as pysin

It is possible to import and cimport namespace-like objects (modules or Cython pack‐
ages) that have the same name, although this is not recommended, for sanity’s sake. So,
Cython allows the following:

compile-time access to functions from math.h
from libc cimport math
runtime access to the math module
import math

def call_sin(x):

108 | Chapter 6: Organizing Cython Code

 # which `sin()` does this call?
 return math.sin(x)

In the preceding example, it is not immediately obvious that call_sin will call the sin
function from the C standard library, and not the sin function from Python’s math built-
in module. It is better to rename one of the imports to make explicit which math name‐
space is intended:

from libc cimport math as cmath
import math as pymath

def call_csin(x):
 return cmath.sin(x)

def call_pysin(x):
 return pymath.sin(x)

Definition files have some similarities to C (and C++) header files:

• They both declare C-level constructs for use by external code.
• They both allow us to break up what would be one large file into several components.
• They both declare the public C-level interface for an implementation.

C and C++ access header files via the #include preprocessor command, which essen‐
tially does a dumb source-level inclusion of the named header file. Cython’s cimport
statement is more intelligent and less error prone: we can think of it as a compile-time
import statement that works with namespaces.

Cython’s predecessor, Pyrex, did not have the cimport statement, and instead had an
include statement for source-level inclusion of an external include file. Cython also
supports the include statement and include files, which are used in several Cython
projects.

Include Files and the include Statement
Suppose we have an extension type that we want available on all major platforms, but
it must be implemented differently on different platforms. This scenario may arise due
to, for example, filesystem incompatibilities, or wrapping different APIs in a consistent
way. Our goal is to abstract away these differences and to provide a consistent interface
in a transparent way. Include files and the include statement provide one way to ac‐
complish our nice platform-independent design goals.

We place three different implementations of the extension type in three .pxi files:
linux.pxi, darwin.pxi, and windows.pxi. One of the three will be selected and used at
compile time. To pull everything together, inside interface.pyx we have the following
code, using the IF compile-time statement:

Include Files and the include Statement | 109

IF UNAME_SYSNAME == "Linux":
 include "linux.pxi"
ELIF UNAME_SYSNAME == "Darwin":
 include "darwin.pxi"
ELIF UNAME_SYSNAME == "Windows":
 include "windows.pxi"

This example does a source-level inclusion of one of the .pxi files.

Using include twice with the same source file may lead to compi‐
lation errors due to duplicated definitions or implementations, so
take care to use include correctly.

Even though the include statement is indented inside the IF block, the inserted code
will not retain this extra indentation level. The include statement can appear in any
scope and the indentation level will be adjusted accordingly.

Some older Cython projects use include in place of cimport. For new code, it is rec‐
ommended to use cimport with definition files rather than include with include files,
except when source-level inclusion is what is desired.

With definition files, include files, and implementation files at our command, we can
adapt Cython as needed to any Python or C code base.

Organizing and Compiling Cython Modules Inside Python
Packages
A great feature of Cython is that it allows us to incrementally convert Python code to
Cython code as performance and profiling dictate. This approach allows the external
interface to remain unchanged while the overall performance significantly improves.

Let’s take a different approach to our simulation example. Suppose we start with a Python
package pysimulator with the following structure:

pysimulator
├── __init__.py
├── main.py
├── core
│ ├── __init__.py
│ ├── core.py
│ └── sim_state.py
├── plugins
│ ├── __init__.py
│ ├── plugin0.py
│ └── plugin1.py
└── utils

110 | Chapter 6: Organizing Cython Code

 ├── __init__.py
 ├── config.py
 └── output.py

The focus for this example is not the internal details of the pysimulator modules; it’s
how Cython modules can access compile-time declarations and work easily within the
framework of a Python project.

Suppose we have profiled the simulator and determined that the core.py, sim_state.py,
and plugin0.py modules need to be converted into Cython extension modules for per‐
formance. All other modules can remain pure Python for flexibility.

The sim_state.py module contains the State class that we will convert into an extension
type. The core.py module contains two functions, run and step, that we will convert to
cpdef functions. The plugin0.py module contains a run function that we will also convert
to a cpdef function.

The first step is to convert the .py modules into implementation files and extract their
public Cython declarations into definition files. Because components are spread out in
different packages and subpackages, we must remember to use the proper qualified
names for importing.

The sim_state.pxd file contains just the declarations for a ctypedef and the cdef class
State:

ctypedef double real_t

cdef class State:
 cdef:
 unsigned int n_particles
 real_t *x
 real_t *vx

 cpdef real_t momentum(self)

All cpdef functions will take a State instance, and they need C-level access. So, all
modules will have to cimport the State declaration from the appropriate definition file.

The core.pxd file declares the run and step cpdef functions:

from simulator.core.sim_state cimport State, real_t

cpdef int run(State, list plugins=None)
cpdef step(State st, real_t dt)

The cimport is absolute, using the fully qualified name to access the sim_state defi‐
nition file for clarity.

Lastly, the plugin0.pxd file declares its own run cpdef function that takes a State
instance:

Organizing and Compiling Cython Modules Inside Python Packages | 111

from simulator.core.sim_state cimport State

cpdef run(State st)

The main.py file—still pure Python, like everything inside the utils subpackage—pulls
everything together:

from simulator.utils.config import setup_params
from simulator.utils.output import output_state
from simulator.core.sim_state import State
from simulator.core.core import run
from simulator.plugins import plugin0

def main(fname):
 params = setup_params(fname)
 state = State(params)
 output_state(state)
 run(state, plugins=[plugin0.run])
 output_state(state)

The main.py module remains unchanged after our conversion to Cython, as do any
other pure-Python modules in the project. Cython allows us to surgically replace indi‐
vidual components with extension modules, and the rest of a project remains as is.

To run this simulation, we first have to compile the Cython source into extension mod‐
ules. We can use pyximport for on-the-fly compilation during development and testing:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c67650>)

In [2]: from simulator.main import main

The import statement here imported all extension modules, and pyximport compiled
them for us automatically. We now call main, passing in a parameter file:

In [3]: main("params.txt")

simulator.utils.config.setup_params('dummy.params')
simulator.utils.output.output(State(n_particles=100000))
 state.momentum() == 0.0

running simulator.core.run(State(n_particles=100000))
simulator.plugins.plugin0.run(State(n_particles=100000))
simulator.utils.output.output(State(n_particles=100000))
 state.momentum() == 300000.0

The output is simply indicating that everything is running as it should. We see output
for the simulation setup, for the initial state, and for running the core.run function,
which in turn calls the plugin’s run function and the step function. Lastly, the final
simulation state is output.

112 | Chapter 6: Organizing Cython Code

Using pyximport here to compile our simulator on the fly is fine for quick develop‐
ment. To create a distributable compiled package, we will want to use a distutils script
or another build system to manage the compilation and packaging for us.

For a package like simulator, the cythonize function from the Cython.Build package
can handle all the details for us. A minimal setup.py script for simulator is:

from distutils.core import setup
from Cython.Build import cythonize

setup(name="simulator",
 packages=["simulator", "simulator.core",
 "simulator.utils", "simulator.plugins"],
 ext_modules=cythonize("**/*.pyx"),
)

We call cythonize with a glob pattern to recursively search all directories for .pyx
implementation files and compile them as needed. Using cythonize with distutils in
this way is flexible and powerful—it will automatically detect when a .pyx file has
changed and recompile as needed. Further, it will detect interdependencies between
implementation and definition files and recompile all dependent implementation files.

Summary
Cython’s three file types, in conjunction with the cimport and include statements, allow
us to organize Cython code into separate modules and packages, without sacrificing
performance. This allows Cython to expand beyond speeding up isolated extension
modules, and allows it to scale to full-fledged projects. We can use the techniques in
this chapter to speed up select Python modules after profiling indicates the need, or we
can use them to design and organize an entire project that uses Cython as the primary
language.

Summary | 113

CHAPTER 7

Wrapping C Libraries with Cython

Controlling complexity is the essence of computer programming.
— B. Kernighan

We have seen how Cython can take Python code and improve its performance with
ahead-of-time compilation. This chapter will focus on the inverse: starting with a C
library, how do we make it accessible to Python? Such a task is typically the domain of
specialized tools like SWIG, SIP, Boost.Python, ctypes, cffi, or others. Cython, while
not automating the process like some, provides the capability to wrap external libraries
in a straightforward way. Cython also makes C-level Cython constructs available to
external C code, which can be useful when we are embedding Python in a C application,
for instance.

Because Cython understands both the C and Python languages, it allows full control
over all aspects during interfacing. It accomplishes this feat while remaining Python-
like, making Cython interfacing code easier to understand and debug. When wrapping
C libraries in Cython, we are not restricted to a domain-specific wrapping language—
we can bring to bear all of the Python language, its standard library, and any third-party
libraries to help us, along with all the Cython constructs we have learned about in
previous chapters.

When done well, Cython-wrapped libraries have C-level performance, minimal wrap‐
per overhead, and a Python-friendly interface. End users need never suspect they are
working with wrapped code.

Declaring External C Code in Cython
To wrap a C library with Cython, we must first declare in Cython the interface of the C
components we wish to use. To this end, Cython provides the extern block statement.

115

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

These declaration blocks are meant to tell Cython what C constructs we wish to use
from a specified C header file. Their syntax is:1

cdef extern from "header_name":
 indented declarations from header file

The header_name goes inside a single- or double-quoted string.

Including the extern block has the following effects:

• The cython compiler generates an #include "header_name" line inside the gener‐
ated source file.

• The types, functions, and other declarations made in the block body are accessible
from Cython code.

• Cython will check at compile time that the C declarations are used in a type-correct
manner, and will produce a compilation error if they are not.

The declarations inside the extern block have a straightforward C-like syntax for vari‐
ables and functions. They use the Cython-specific syntax for declaring structs and
unions covered briefly in Chapter 3.

Bare extern Declarations
Cython supports the extern keyword, which can be added to any C declaration in
conjunction with cdef:

cdef extern external_declaration

When we use extern in this manner, Cython will place the declaration—which can be
a function signature, variable, struct, union, or other such C declaration—in the gen‐
erated source code with an extern modifier. The Cython extern declaration must match
the C declaration.

This style of external declarations is not recommended, as it has the same drawbacks as
using extern in C directly. The extern block is preferred.

If it is necessary to have an #include preprocessor directive for a specific header file,
but no declarations are required, the declaration block can be empty:

cdef extern from "header.h":
 pass

116 | Chapter 7: Wrapping C Libraries with Cython

https://github.com/cythonbook/examples

Conversely, if the name of the header file is not necessary (perhaps it is already included
by another header file that has its own extern block), but we would like to interface
with external code, we can suppress #include statement generation with from *:

cdef extern from *:
 declarations

Before we go into the details of the declaration block, it is important to realize what
extern blocks do not do.

Cython Does Not Automate Wrapping
The purpose of the extern block is straightforward, but can be misleading at first
glance. In Cython, extern blocks (and extern declarations) exist to ensure we are calling
and using the declared C functions, variables, and structs in a type-correct manner. The
extern block does not automatically generate wrappers for the declared objects. As
mentioned, the only C code that is generated for the entire extern block is a single
#include "header.h" line. We still have to write def and cpdef (and possibly cdef)
functions that call the C functions declared in the extern block. If we do not, then the
external C functions declared in the extern block cannot be accessed from Python code.
Cython does not parse C files and automate wrapping C libraries.

It would be nice if Cython automatically wrapped everything declared in an extern
block (and there is an active project that builds on Cython to do the equivalent). Using
Cython to wrap large C libraries with hundreds of functions, structs, and other con‐
structs is a significant undertaking. Brave souls have successfully done just this for the
MPI (MPI4Py), PETSc (PETSc4Py), and HDF5 (h5py) libraries, for example. They
chose Cython as their wrapping tool over other options (which can automatically wrap
libraries) for various reasons:

• Cython’s generated wrapper code is highly optimized and generates wrappers that
are up to an order of magnitude faster than those of other wrapping tools.

• Often the goal is to customize, improve, simplify, or otherwise Pythonize the in‐
terface as it is wrapped, so an automated wrapping tool would not provide much
gain.

• The Cython language is a high-level, Python-like language and not limited to
domain-specific interfacing commands, making complicated wrapping tasks easier.

Now that we realize what an extern block does and does not do, let’s look at the decla‐
rations in the extern block in more detail.

Declaring External C Code in Cython | 117

http://xdress.org/index.html

Declaring External C Functions and typedefs
The most common declarations placed inside an extern block are C functions and
typedefs. These declarations translate almost directly from their C equivalents. Typi‐
cally the only modifications necessary are to:

• change typedef to ctypedef;
• remove unnecessary and unsupported keywords such as restrict and volatile;
• ensure the function’s return type and name are declared on a single line;
• remove line-terminating semicolons.

It is possible to break up a long function declaration over several lines after the opening
parenthesis of the argument list, as in Python.

For example, consider these simple C declarations and macros in the file header.h:

#define M_PI 3.1415926
#define MAX(a, b) ((a) >= (b) ? (a) : (b))

double hypot(double, double);

typedef int integral;
typedef double real;

void func(integral, integral, real);

real *func_arrays(integral[], integral[][10], real **);

The Cython declarations for them are, except for the macros, nearly copy and paste:

cdef extern from "header.h":

 double M_PI
 float MAX(float a, float b)

 double hypot(double x, double y)

 ctypedef int integral
 ctypedef double real

 void func(integral a, integral b, real c)

 real *func_arrays(integral[] i, integral[][10] j, real **k)

Note that when declaring the M_PI macro, we declare it as if it were a global variable of
type double. Similarly, when declaring the MAX function-like macro, we declare it in
Cython as if it were a regular C function named MAX that takes two float arguments
and returns a float.

118 | Chapter 7: Wrapping C Libraries with Cython

In the preceding extern block we added variable names for the function arguments.
This is recommended but not mandatory: doing so allows us to call these functions with
keyword arguments and, if the argument names are meaningful, helps document the
interface. This is impossible if argument names are omitted.

Cython supports the full range of C declarations, even the function-pointer-returning-
array-of-function-pointers variety. Of course, simple type declarations—scalars of built-
in numeric types, arrays, pointers, void, and the like—form the backbone of most C
declarations and compose the majority of C header files. Most of the time, we can cut
and paste straightforward C function declarations into the body of the extern block,
remove the semicolons, and be on our way.

As an example of a more complicated declaration that Cython handles without difficulty,
consider a header file, header.h, containing a function named signal that takes a func‐
tion pointer and returns a function pointer. The extern block would look like:

cdef extern from "header.h":
 void (*signal(void(*)(int)))(int)

Because Cython uses extern blocks only to check type correctness, we can add a helper
ctypedef to this extern block to make signal’s declaration easier to understand:

cdef extern from "header.h":
 ctypedef void (*void_int_fptr)(int)
 void_int_fptr signal(void_int_fptr)

The second declaration is equivalent to the first but markedly easier to understand.
Because Cython does not declare the void_int_ptr typedef in generated code, we can
use it to help make the C declarations more straightforward. The void_int_fptr
ctypedef is only a Cython declaration convenience; there is no corresponding typedef
in the header file.

Declaring and Wrapping C structs, unions, and enums
To declare an external struct, union, or enum in an extern block, we use the same syntax
as described in “Declaring and Using structs, unions, and enums” on page 56, but we
can omit the cdef, as that is implied:

cdef extern from "header_name":

 struct struct_name:
 struct_members

 union union_name:
 union_members

 enum enum_name:
 enum_members

Declaring and Wrapping C structs, unions, and enums | 119

These match the following C declarations:

struct struct_name {
 struct_members
};

union union_name {
 union_members
};

enum enum_name {
 enum_members
};

Cython generates struct struct_name declarations for the struct, and the equivalent
for union and enum.

For the typedefed version of these:

typedef struct struct_name {
 struct_members
} struct_alias;

typedef union union_name {
 union_members
} union_alias;

typedef enum enum_name {
 enum_members
} enum_alias;

simply prefix with ctypedef on the Cython side and use the type alias name:

cdef extern from "header_name":

 ctypedef struct struct_alias:
 struct_members

 ctypedef union union_alias:
 union_members

 ctypedef enum enum_alias:
 enum_members

In this case, Cython will use just the alias type names for declarations and will not
generate the struct, union, or enum as part of the declaration, as is proper.

To statically declare a struct variable in Cython code, use cdef with the struct name
or the typedef alias name; Cython will generate the right thing for us in either case.

It is only necessary to declare the fields that are actually used in the preceding struct,
union, and enum declarations in Cython. If no fields are used but it is necessary to use
the struct as an opaque type, then the body of the struct should be the pass statement.

120 | Chapter 7: Wrapping C Libraries with Cython

Wrapping C Functions
After we have declared the external functions we want to use, we still must wrap them
in a def function, a cpdef function, or a cdef class to access them from Python.

For example, say we want to wrap a simple random-number generator (RNG). We will
wrap the Mersenne twister, which requires us to expose at least two functions to Python.
To initialize the RNG’s state we call init_genrand; after doing so we can call
genrand_real1 to get a random real number on the closed interval [0, 1]. The
init_genrand function takes an unsigned long int as a seed value, and genrand_re
al1 takes no arguments and returns a double.

Declaring them in Cython is straightforward:

cdef extern from "mt19937ar.h":
 void init_genrand(unsigned long s)
 double genrand_real1()

We must provide def or cpdef functions so that these declarations can be called from
Python:

def init_state(unsigned long s):
 init_genrand(s)

def rand():
 return genrand_real1()

To compile everything together, we can use a distutils script, which we name setup.py.
We must be sure to include the mt19937ar.c source file in the sources list:

from distutils.core import setup, Extension
from Cython.Build import cythonize

ext = Extension("mt_random",
 sources=["mt_random.pyx", "mt19937ar.c"])

setup(
 name="mersenne_random",
 ext_modules = cythonize([ext])
)

Compiling is straightforward. Please see Chapter 2 for platform-specific command-line
flags:

$ python setup.py build_ext --inplace

This command will generate several lines of output. If it is successful, Python’s
distutils will produce an extension module named mt_random.so or mt_ran‐
dom.pyd, depending on whether we are on Mac OS X, Linux, or Windows.

We can use it from IPython as follows:

Wrapping C Functions | 121

http://bit.ly/mersenne_twister

In [1]: import mt_random

In [2]: mt_random.init_state(42)

In [3]: mt_random.rand()
Out[3]: 0.37454011439684315

Note that we cannot call either init_genrand or genrand_real1 from Python:

In [4]: mt_random.init_genrand(42)
Traceback (most recent call last):
 File "<ipython-input-2-34528a64a483>", line 1, in <module>
 mt_random.init_genrand(42)
AttributeError: 'module' object has no attribute 'init_genrand'

In [5]: mt_random.genrand_real1()
Traceback (most recent call last):
 File "<ipython-input-3-23619324ba3f>", line 1, in <module>
 mt_random.genrand_real1()
AttributeError: 'module' object has no attribute 'genrand_real1'

In about two dozen lines of code, we have wrapped a simple random-number generator
with minimal overhead. One downside of the RNG’s design is that it uses a static global
array to store the RNG’s state, allowing only one RNG at a time.

In the next section, we will wrap a version of the RNG API that supports concurrent
generators.

Wrapping C structs with Extension Types
The improved API first forward-declares a struct typedef in the header file:

typedef struct _mt_state mt_state;

It then declares creation and destruction functions:

mt_state *make_mt(unsigned long s);
void free_mt(mt_state *state);

The random-number-generation functions take a pointer to a heap-allocated mt_state
struct as an argument. We will wrap just one of them:

double genrand_real1(mt_state *state);

The Cython extern declaration for this new interface is, again, mostly copy and paste:

cdef extern from "mt19937ar-struct.h":
 ctypedef struct mt_state
 mt_state *make_mt(unsigned long s)
 void free_mt(mt_state *state)
 double genrand_real1(mt_state *state)

122 | Chapter 7: Wrapping C Libraries with Cython

Because the mt_state struct is opaque and Cython does not need to access any of its
internal fields, the preceding ctypedef declaration is sufficient. Essentially, mt_state is
a named placeholder.

Again, Cython exposes none of these C extern declarations to Python. In this case, it
is nice to wrap this improved version in an extension type named MT. The only attribute
this extension type will hold is a private pointer to an mt_state struct:

cdef class MT:
 cdef mt_state *_thisptr

Because creating an mt_state heap-allocated struct must happen at the C level before
an MT object is initialized, the proper place to do it is in a __cinit__ method:

cdef class MT:
 cdef mt_state *_thisptr
 def __cinit__(self, unsigned long s):
 self._thisptr = make_mt(s)
 if self._thisptr == NULL:
 msg = "Insufficient memory."
 raise MemoryError(msg)

The corresponding __dealloc__ just forwards its work to free_mt:

cdef class MT:
 # ...
 def __dealloc__(self):
 if self._thisptr != NULL:
 free_mt(self._thisptr)

These Cython methods allow us to properly create, initialize, and finalize an MT object.
To generate random numbers, we simply define def or cpdef methods that call the
corresponding C functions:

cdef class MT:
 # ...
 cpdef double rand(self):
 return genrand_real1(self._thisptr)

Declaring and interfacing the remaining generation functions is straightforward and is
left as an exercise for the reader.

To try out our extension type wrapper, we must first compile it into an extension module.
We compile the mt_random_type.pyx file together with the mt19937ar-struct.c source
using distutils. A script named setup_mt_type.py to take care of the gory details would
look something like the following:

from distutils.core import setup, Extension
from Cython.Build import cythonize

ext_type = Extension("mt_random_type",
 sources=["mt_random_type.pyx",

Wrapping C structs with Extension Types | 123

 "mt19937ar-struct.c"])

setup(
 name="mersenne_random",
 ext_modules = cythonize([ext_type])
)

As in the previous section, we compile it with the standard distutils invocation:

$ python setup_mt_type.py build_ext --inplace

This generates an extension module that we can import as mt_random_type from
Python:

In [1]: from mt_random_type import MT

In [2]: mt1, mt2 = MT(0), MT(0)

Here we have created two separate random-number generators with the same seed to
verify that each has separate state:

In [3]: mt1.rand() == mt2.rand()
Out[3]: True

In [4]: for i in range(1000):
 ...: assert mt1.rand() == mt2.rand()
 ...:

In [5]:

If they were using the same state, the MT objects would modify the same state array each
time rand is called, leading to inconsistent results and failed assertions.

The entire mt_random_type.pyx file is just 22 lines, and it is easily extensible to cover
the remaining RNG functions. It provides a Pythonic interface to a useful RNG library
that is familiar to anyone who has used Python classes before. Its performance is likely
as efficient as a hand-coded C extension type while requiring a fraction of the effort and
no manual reference counting.

For wrapping C structs in Cython, the pattern used in this example is common and
recommended. The internal struct pointer is kept private and used only internally. The
struct is allocated and initialized in __cinit__ and automatically deallocated in
__dealloc__. Declaring methods cpdef when possible allows them to be called by ex‐
ternal Python code, and efficiently from other Cython code. It also allows these methods
to be overridden in Python subclasses.

Now that we have covered the basics of wrapping a C interface with Cython, let’s focus
on some of the customization features that provide greater control.

124 | Chapter 7: Wrapping C Libraries with Cython

Constants, Other Modifiers, and Controlling What Cython
Generates
As mentioned in Chapter 3, the Cython language understands the const keyword, but
it is not useful in cdef declarations. It is used in specific instances within cdef extern
blocks to ensure Cython generates const-correct code.

The const keyword is not necessary for declaring function arguments, and can be in‐
cluded or omitted without effect. It may be required when we are declaring a typedef
that uses const, or when a function return value is declared const:

typedef const int * const_int_ptr;
const double *returns_ptr_to_const(const_int_ptr);

We can carry these declarations over into Cython and use them as required:

cdef extern from "header.h":
 ctypedef const int * const_int_ptr
 const double *returns_ptr_to_const(const_int_ptr)

Other C-level modifiers, such as volatile and restrict, should be removed in Cython
extern blocks; leaving them in results in a compile-time error.

Occasionally it is useful to use an alias for a function, struct, or typedef name in Cython.
This allows us to refer to a C-level object with a name in Cython that is different from
its actual name in C. This feature also provides a lot of control over exactly what is
declared at the C level.

For instance, suppose we want to wrap a C function named print. We cannot use the
name print in Cython, because it is a reserved keyword in Python 2 and it clashes with
the print function in Python 3. To give such a function an alias, we can use the following
declaration:

cdef extern from "printer.h":
 void _print "print"(fmt_str, arg)

The function is called _print in Cython, but it is called print in generated C. This also
works for typedefs, structs, unions, and enums:

cdef extern from "pathological.h":

 # typedef void * class
 ctypedef void * klass "class"

 # int finally(void) function
 int _finally "finally"()

 # struct del { int a, b; };
 struct _del "del":
 int a, b

Constants, Other Modifiers, and Controlling What Cython Generates | 125

 # enum yield { ALOT; SOME; ALITTLE; };
 enum _yield "yield":
 ALOT
 SOME
 ALITTLE

In all cases, the string in quotes is the name of the object in generated C code. Cython
does no checking on the contents of this string, so this feature can be used (or abused)
to control the C-level declaration.

Exposing Cython Code to C
As we saw in Chapter 3, Cython allows us to declare C-level functions, variables, and
structs with the cdef keyword, and we saw how we can use these C-level constructs
directly from Cython code. Suppose, for instance, that it would be useful to call a cdef
Cython function from an external C function in an application, essentially wrapping
Python in C. This use case is less frequent than wrapping a C library in Python, but it
does arise. Cython provides two mechanisms to support this scenario.

The first mechanism is via the public keyword. We already saw public in the context
of declaring the external visibility of extension type attributes; here we use it for a dif‐
ferent purpose.

If we add the public keyword to a C-level type, variable, or function declared with
cdef, then these constructs are made accessible to C code that is compiled or linked
with the extension module.

For instance, suppose we have a file named transcendentals.pyx that uses the public
keyword for a cdef variable and function:

cdef public double PI = 3.1415926

cdef public double get_e():
 print "calling get_e()"
 return 2.718281828

When we generate an extension module from transcendentals.pyx, the public declara‐
tions cause the cython compiler to output a transcendentals.h header in addition to
transcendentals.c. This header declares the public C interface for the Cython source. It
must be included in external C code that wants to call get_e or that wants to use PI.

External C code that calls into our Cython code must also be sure both to initialize the
Python interpreter with Py_Initialize and to initialize the module with
inittranscendentals before using any public declarations:

#include "Python.h"
#include "transcendentals.h"
#include <math.h>

126 | Chapter 7: Wrapping C Libraries with Cython

#include <stdio.h>

int main(int argc, char **argv)
{
 Py_Initialize();
 inittranscendentals();
 printf("pi**e: %f\n", pow(PI, get_e()));
 Py_Finalize();
 return 0;
}

After generating transcendentals.c:

$ cython transcendentals.pyx

we can then compile our main.c source file with the transcendental.c source:

$ gcc $(python-config --cflags) \
 $(python-config --ldflags) \
 transcendentals.c main.c

and run the result:

$./a.out
calling get_e()
pi**e: 22.459157

The second mechanism uses the api keyword, which can be attached to C-level func‐
tions and extension types only:

cdef api double get_e():
 print "calling get_e()"
 return 2.718281828

Both api and public modifiers can be applied to the same object.

In a similar way to the public keyword, the api keyword causes cython to generate
transcendentals_api.h. It can be used by external C code to call into the api-declared
functions and methods in Cython. This method is more flexible in that it uses Python’s
import mechanism to bring in the api-declared functions dynamically without explic‐
itly compiling with the extension module source or linking against the dynamic library.

The one requirement is that import_transcendentals be called before we use get_e:

#include "transcendentals_api.h"
#include <stdio.h>

int main(int argc, char **argv)
{
 import_transcendentals();
 printf("e: %f\n", get_e());
 return 0;
}

Constants, Other Modifiers, and Controlling What Cython Generates | 127

Note that we cannot access PI via this method—to access it using api, we would have
to create an api function that returns PI, as the api method can work only with functions
and extension types. This is the tradeoff for the flexibility the api mechanism provides
via dynamic runtime importing.

Error Checking and Raising Exceptions
It is common for an external C function to communicate error states via return codes
or error flags. To properly wrap these functions, we must test for these cases in the
wrapper function and, when an error is signaled, explicitly raise a Python exception. It
is tempting to use an except clause (see “Functions and Exception Handling” on page
51) to automatically convert a C error return code into a Python exception, but doing
so will not work; this is not the purpose of the except clause. Cython cannot automat‐
ically detect when an external C function sets a C error state.

The except clause can be used in conjunction with cdef callbacks, however. We will see
an example of this in the next section.

Callbacks
As we saw previously, Cython supports C function pointers. Using this capability, we
can wrap C functions that take function pointer callbacks. The callback can be a pure-
C function that does not call the Python/C API, or it can call arbitrary Python code,
depending on the use case. This powerful feature allows us to pass in a Python function
created at runtime to control the behavior of the underlying C function.

Working with callbacks across language boundaries can get complicated, especially
when it comes to proper exception handling.

To get started, suppose we want to wrap the qsort function from the C standard li‐
brary. It is declared in stdlib.h:

cdef extern from "stdlib.h":
 void qsort(void *array, size_t count, size_t size,
 int (*compare)(const void *, const void *))

The first void pointer is to an array with count elements, and each element occupies
size bytes. The compare function pointer callback takes two void pointers, a and b, into
array. It must return a negative integer if a < b, 0 if a == b, and a positive integer if
a > b.

For the sake of this example, we will create a function named pyqsort to sort a Python
list of integers using C’s qsort with varying comparison functions.

The function proceeds in four steps:

128 | Chapter 7: Wrapping C Libraries with Cython

1. Allocate a C array of integers of the proper size.
2. Convert the list of Python integers into the C int array.
3. Call qsort with the proper compare function.
4. Convert the sorted values back to Python and return.

The function definition looks like this:

cdef extern from "stdlib.h":
 void *malloc(size_t size)
 void free(void *ptr)

def pyqsort(list x):
 cdef:
 int *array
 int i, N

 # Allocate the C array.
 N = len(x)
 array = <int*>malloc(sizeof(int) * N)
 if array == NULL:
 raise MemoryError("Unable to allocate array.")

 # Fill the C array with the Python integers.
 for i in range(N):
 array[i] = x[i]

 # qsort the array...

 # Convert back to Python and free the C array.
 for i in range(N):
 x[i] = array[i]
 free(array)

To actually sort the array, we need to set up a compare callback. To do a standard sort,
we can use a cdef function:

cdef int int_compare(const void *a, const void *b):
 cdef int ia, ib
 ia = (<int*>a)[0]
 ib = (<int*>b)[0]
 return ia - ib

In int_compare, we convert the void pointer arguments into C integers. We learned in
Chapter 3 that to dereference a pointer in Cython we index into it with index 0. If
ia < ib, then ia - ib will return the correctly signed value for qsort.

We now have all the pieces we need to call qsort in pyqsort:

 # qsort the array...
 qsort(<void*>array, <size_t>N, sizeof(int), int_compare)

Callbacks | 129

This version of the function works, but is fairly static. One way to expand its capability
is to allow reverse-sorting the array by negating the return value of int_compare:

cdef int reverse_int_compare(const void *a, const void *b):
 return -int_compare(a, b)

By providing the optional reverse argument, the user can exert some control over
sorting. Let’s also add a ctypedef to make working with the callback easier:

ctypedef int (*qsort_cmp)(const void *, const void *)

def pyqsort(list x, reverse=False):
 # ...
 cdef qsort_cmp cmp_callback

 # Select the appropriate callback.
 if reverse:
 cmp_callback = reverse_int_compare
 else:
 cmp_callback = int_compare

 # qsort the array...
 qsort(<void*>array, <size_t>N, sizeof(int), cmp_callback)

 # ...

Let’s try out our routine. First, we compile on the fly with pyximport and import the
pyqsort function:

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c7c650>)

In [2]: from pyqsort import pyqsort

In [3]: pyqsort?
Type: builtin_function_or_method
String Form:<built-in function pyqsort>
Docstring: <no docstring>

To test our function, we need a mixed-up list of integers:

In [4]: from random import shuffle

In [5]: intlist = range(10)

In [6]: shuffle(intlist)

In [7]: print intlist
[2, 1, 3, 7, 6, 4, 0, 9, 5, 8]

Calling pyqsort should sort the list in place:

130 | Chapter 7: Wrapping C Libraries with Cython

In [8]: pyqsort(intlist)

In [9]: print intlist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

And passing in reverse=True should reverse-sort:

In [10]: pyqsort(intlist, reverse=True)

In [11]: print intlist
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Our basic functionality is looking good.

For full control over the sorting, let’s allow users to pass in their own Python comparison
function. For this to work, the C callback has to call the Python callback, converting
arguments between C types and Python types.

We will use a module-global Python object, py_cmp, to store the Python comparison
function. This allows us to set the Python callback at runtime, and the C callback wrapper
can access it when needed:

cdef object py_cmp = None

Because qsort expects a C comparison function, we have to create a callback wrapper
cdef function that matches the compare function pointer signature and that calls our
py_cmp Python function:

cdef int py_cmp_wrapper(const void *a, const void *b):
 cdef int ia, ib
 ia = (<int*>a)[0]
 ib = (<int*>b)[0]
 return py_cmp(ia, ib)

Inside py_cmp_wrapper, we must cast the void pointer arguments to int pointers,
dereference them to extract the underlying integers, and pass these integers to py_cmp.
Because py_cmp is a Python function, Cython will automatically convert the C integers
to Python integers for us. The return value from py_cmp will be converted to a C integer.

We can define a reverse_py_cmp_wrapper to invert the values to support reverse
sorting:

cdef int reverse_py_cmp_wrapper(const void *a, const void *b):
 return -py_cmp_wrapper(a, b)

We now have four callbacks: int_compare and reverse_int_compare, which are in pure
C; and py_cmp_wrapper and reverse_py_cmp_wrapper, which call a user-provided
Python callback.

The logic to select the right callback looks something like the following:

Callbacks | 131

def pyqsort(list x, cmp=None, reverse=False):
 global py_cmp
 # ...

 # Set up comparison callback.
 if cmp and reverse:
 py_cmp = cmp
 cmp_callback = reverse_py_cmp_wrapper
 elif cmp and not reverse:
 py_cmp = cmp
 cmp_callback = py_cmp_wrapper
 elif reverse:
 cmp_callback = reverse_int_compare
 else:
 cmp_callback = int_compare

 # qsort the array...
 qsort(<void*>array, <size_t>N, sizeof(int), cmp_callback)

There are four cases to consider: cmp is provided or left as None, and reverse is True or
False. Each case results in cmp_callback being set to a different cdef function. If cmp
is provided, then the global py_cmp is set to it so that the callback wrapper can access it.

Let’s try out the new functionality. First we import, using pyximport to recompile, and
create a random array of positive and negative values:

In [13]: import pyximport; pyximport.install()
Out[13]: (None, <pyximport.pyximport.PyxImporter at 0x101c7c650>)

In [14]: from pyqsort import pyqsort

In [15]: from random import shuffle

In [16]: a = range(-10, 10)

In [17]: shuffle(a)

In [18]: print a
[-8, 3, -10, 5, -3, 8, 7, -6, 4, -4, -2, 2, -7, 0, -5, -1, 6, -9, 9, 1]

Suppose we want to sort a according to absolute value. We can create a Python com‐
parison function for that, and call pyqsort with it:

In [19]: def cmp(a, b):
 : return abs(a) - abs(b)
 :

In [20]: pyqsort(a, cmp=cmp)

In [21]: print a
[0, 1, -1, -2, 2, 3, -3, 4, -4, -5, 5, 6, -6, -7, 7, -8, 8, 9, -9, -10]

Reversing the result works as well:

132 | Chapter 7: Wrapping C Libraries with Cython

In [22]: pyqsort(a, cmp=cmp, reverse=True)

In [23]: print a
[-10, 9, -9, 8, -8, 7, -7, -6, 6, 5, -5, -4, 4, -3, 3, -2, 2, 1, -1, 0]

What about error handling? For that, we can make use of the except * clause with our
cdef callbacks.

Callbacks and Exception Propagation
Thus far, any Python exception raised in cmp is ignored. To address this limitation, we
can use the except * clause when declaring our cdef callbacks. The except * clause is
part of the function’s declaration, so we must update the qsort declaration as well to
allow it to be exception-friendly:

cdef extern from "stdlib.h":
 void qsort(void *array, size_t count, size_t size,
 int (*compare)(const void *, const void *) except *)

We also add the except * clause to the qsort_cmp ctypedef, and to each of our four
cdef callbacks:

ctypedef int (*qsort_cmp)(const void *, const void *) except *

cdef int int_compare(const void *a, const void *b) except *:
 # ...

cdef int reverse_int_compare(const void *a, const void *b) except *:
 # ...

cdef int py_cmp_wrapper(const void *a, const void *b) except *:
 # ...

cdef int reverse_py_cmp_wrapper(const void *a, const void *b) except *:
 # ...

With these trivial modifications, Cython now checks for an exception every time our
callbacks are called, and properly unwinds the call stack. Let’s see it in action:

$ ipython --no-banner

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c68710>)

In [2]: from pyqsort import pyqsort

In [3]: def cmp(a, b):
...: raise Exception("Not very interesting.")
...:

In [4]: ll = range(10)

Callbacks | 133

In [5]: pyqsort(ll, cmp=cmp)
Traceback (most recent call last):
 File "pyqsort.pyx", line 68, in pyqsort.py_cmp_wrapper (...)
 return py_cmp((<int*>a)[0], (<int*>b)[0])
 File "<ipython-input-3-747656ee32db>", line 2, in cmp
 raise Exception("Not very interesting.")
Exception: Not very interesting.

Because we use the except * clause, the callbacks check for an exception after every
call. This means there is some overhead associated with this functionality. However, the
improved error handling may be more than worth the small performance cost.

Exception propagation with cdef callbacks goes a long way toward providing a Pythonic
interface to a pure-C library.

Summary
Compiling Python to C and wrapping C in Python are the yin and yang of Cython.
There is no strict separation between the two: once a C function is declared in an extern
block, it can be used and called as if it were a regular cdef function defined in Cython
itself. All of the Python-specific parts can be used to help wrap C libraries. To the outside
Python world, no one has to know whether we laboriously implemented an algorithm
on our own or simply called out to a preexisting implementation defined elsewhere.

The concepts, techniques, and examples in this chapter cover basic and intermediate
usage of Cython’s interfacing features. We will use these basics in the next chapter, where
we cover interfacing with C++.

134 | Chapter 7: Wrapping C Libraries with Cython

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

CHAPTER 8

Wrapping C++ Libraries with Cython

There are only two kinds of languages: the ones
people complain about and the ones nobody uses.

— B. Stroustrup

Using Cython to wrap C++ has much in common with using it to wrap C: we must
declare the C or C++ interface we want to wrap in an extern block; we must define
Python-accessible functions and extension types that wrap the library; and we must
convert Python types to and from C or C++ types when Cython cannot apply automatic
conversions.

But C++ is a much larger and more complex language than C. To deal with this added
complexity and the additional language constructs, Cython has C++-specific syntax to
help.

In this chapter, we will cover all of Cython’s C++ wrapping features. Using them, we will
learn how to wrap most C++ constructs in Python.

To get an overview, let’s wrap a simple C++ class from end to end.

Simple Example: MT_RNG Class
To extend our example in Chapter 7, suppose we reimplement our random-number
generator in a simple C++ class with the following interface:1

namespace mtrandom {

const static unsigned int N = 624;

135

https://github.com/cythonbook/examples

class MT_RNG {
 public:
 MT_RNG();
 MT_RNG(unsigned long s);
 MT_RNG(unsigned long init_key[], int key_length);

 // initializes RNG state, called by constructors
 void init_genrand(unsigned long s);

 // generates a random number on [0,0xffffffff]-interval
 unsigned long genrand_int32();

 // generates a random number on [0,1]-real-interval
 double genrand_real1();

 private:
 unsigned long mt[N];
 int mti;
}; // class MT_RNG
} // namespace mtrandom

Cython can only wrap public methods and members; any private or protected
methods or members are not accessible, and thus not wrappable.

To declare this class interface for use in Cython, we use an extern block as before. This
extern block requires three additional elements to handle C++-isms:

• Declaring the C++ namespace with the Cython namespace clause
• Using the cppclass keyword to declare a C++ class interface block
• Declaring the class’s interface in this block

Because MT_RNG is declared in the mtrandom namespace, we must declare the namespace
to Cython in a namepace clause with the cdef extern statement:

cdef extern from "mt19937.h" namespace "mtrandom":
 # ...

Inside the extern block, we declare the namespace-level constant integer N, and we use
the cppclass keyword to declare the MT_RNG C++ class:

cdef extern from "mt19937.h" namespace "mtrandom":
 unsigned int N
 cdef cppclass MT_RNG:
 # ...

Lastly, inside the MT_RNG class’s declaration we place all public constructors, methods,
and data that we wish to access from Cython:

...
 cdef cppclass MT_RNG:

136 | Chapter 8: Wrapping C++ Libraries with Cython

 MT_RNG(unsigned long s)
 MT_RNG(unsigned long init_key[], int key_length)
 void init_genrand(unsigned long s)
 unsigned long genrand_int32()
 double genrand_real1()

If there is no namespace, the namespace clause can be omitted. If there are several nested
namespaces, we can declare them to Cython as namespace "ns_outer::ns_inner".

There can be many cdef extern blocks for each C++ namespace, but
only one C++ namespace per cdef extern block. All C++ con‐
structs inside a cdef extern block with a namespace clause must be
declared inside that C++ namespace. The namespace clause is re‐
quired to ensure that Cython generates the proper fully qualified
names in the extension module. We do not use the C++ namespace
in Cython code.

This suffices to declare the MT_RNG class, allowing us to instantiate it and call its methods
from Cython code. To access it from Python, we still need to write Python-accessible
functions and extension types that wrap MT_RNG.

The Wrapper Extension Type
The conventional way to wrap a C++ class in Cython is with an extension type. We name
it RNG to avoid clashing with the MT_RNG name, although there are ways to allow them
to have the same name (see Chapter 6). Typically, a wrapper extension type has a pointer
to a heap-allocated instance of the C++ class it is wrapping:

cdef class RNG:
 cdef MT_RNG *_thisptr
 # ...

Storing a pointer to a heap-allocated C++ object in an extension type
works in all instances. If the C++ class provides a nullary (no-
argument) constructor, we can store a stack-allocated object directly
—that is, no pointer indirection required. This removes the need to
allocate and delete the instance, and there are efficiency gains as well.

In order for the RNG object to be in a valid state, we need to create and initialize a valid
MT_RNG object, requiring a __cinit__ method. Inside it, we use the new operator to create
a heap-allocated MT_RNG object:

cdef class RNG:
 cdef MT_RNG *_thisptr
 def __cinit__(self, unsigned long s):
 self._thisptr = new MT_RNG(s)

Simple Example: MT_RNG Class | 137

Cython passes the new operator through to the generated C++ code. The new operator
can be used only with C++ classes; the cython compiler will issue a compile-time error
if it’s used incorrectly. (We could check for a NULL result, but Cython can automatically
convert C++ exceptions; see “C++ Exceptions” on page 144.) The __cinit__ call here uses
the first overloaded MT_RNG constructor.

Because every call to new must be matched by a call to delete, we need a __dealloc__
method. Inside it, we call del on self._thisptr, which Cython translates to the C++
delete operator in the generated code:

cdef class RNG:
 # ...
 def __dealloc__(self):
 if self._thisptr != NULL:
 del self._thisptr

As we learned in Chapters 5 and 7, __dealloc__ is called once at finalization, when no
more references to an RNG instance remain.

That takes care of basic creation, initialization, and finalization. To generate random
numbers from Python, we can create simple forwarding cpdef methods for the
genrand_int32 and genrand_real1 methods:

cdef class RNG:
 # ...
 cpdef unsigned long randint(self):
 return self._thisptr.genrand_int32()
 cpdef double rand(self):
 return self._thisptr.genrand_real1()

With these in place, our basic wrapper class is complete.

Compiling with C++
When compiling a C++ project, we need to specify that we are using C++ rather than
C, and we need to include all C++ source files for compilation. To do this with a distu
tils script, we:

• Add a language = "c++" argument to the Extension instance.
• Include all C++ source files in the sources list argument.

For example, a minimal setup.py distutils script to compile our RNG.pyx example
would look like:

from distutils.core import setup, Extension
from Cython.Build import cythonize

ext = Extension("RNG",
 sources=["RNG.pyx", "mt19937.cpp"],

138 | Chapter 8: Wrapping C++ Libraries with Cython

 language="c++")

setup(name="RNG",
 ext_modules=cythonize(ext))

If we use compiler directives inside RNG.pyx (see Chapter 2), we can simplify the
distutils script. At the top of RNG.pyx, we add the following directive comments:

distutils: language = c++
distutils: sources = mt19937.cpp

With these directives in place, the cythonize command can extract the necessary in‐
formation automatically to correctly build the extension. The setup.py script then sim‐
plifies to:

from distutils.core import setup
from Cython.Build import cythonize

setup(name="RNG",
 ext_modules=cythonize("RNG.pyx"))

To compile our extension, we can use the usual command-line invocation:

$ python setup.py build_ext -i

See Chapter 2 for platform-specific details when invoking the compilation step.

We can also use pyximport to compile this extension module. It necessitates creating
an RNG.pyxbld file—not shown here—to instruct pyximport that we are compiling for
C++ and tell it which C++ source files to include.

After compiling, we can try out our RNG class from Python.

Using Our Wrapper from Python
We can import the RNG extension module from the default Python interpreter or from
IPython:

In [1]: from RNG import RNG

and we can instantiate the RNG class and use its methods:

In [2]: r = RNG(42)

In [3]: r.randint()
Out[3]: 1608637542L

In [4]: r.randint()
Out[4]: 3421126067L

In [5]: r.rand()
Out[5]: 0.9507143117838339

Simple Example: MT_RNG Class | 139

2. We could use a NumPy array rather than the built-in array type. We choose the array type here because it
is simple to use and does not introduce an external dependency. Cython’s support for NumPy arrays is covered
in Chapter 10.

In [6]: r.rand()
Out[6]: 0.1834347877147223

We see that using our random-number generator is high level and straightforward.
Using __cinit__ and __dealloc__ in our RNG extension type allows Cython to properly
tie allocation and finalization to Python’s reference counting.

This covers the basics of wrapping our Mersenne twister C++ class in Cython. Going
deeper, we can also wrap C++-specific features with Cython, starting with function
overloading.

Overloaded Methods and Functions
The MT_RNG class has an alternate constructor that takes an array of unsigned longs to
initialize the random-number generator’s state. How can we call this from Python?

Because Python does not support overloading methods, it is up to us to emulate over‐
loading by checking argument types and dispatching to the proper C++ constructor
inside __cinit__. To call MT_RNG’s alternate constructor, we need to supply an array of
unsigned longs and its length. To help with this, we can use the array built-in type
from the Python standard library. An array instance has a similar interface to a list,
but it requires that all contained elements have the same scalar C type. Cython knows
how to work with array objects at both the Python and the C level. In particular, we
can grab a pointer to an array’s underlying C array to pass to our C++ MT_RNG class
constructor.2

To access the built-in array type at the C level, we must use the cimport statement,
which is covered in depth in Chapter 6. We first need to add the proper cimport to
RNG.pyx:

from cpython.array cimport array

We then modify RNG’s __cinit__ to take either a Python integer or a Python sequence.
If the user creates an RNG with an integer argument, we want __cinit__ to call the
original constructor:

...
 def __cinit__(self, seed_or_state):
 if isinstance(seed_or_state, int):
 self._thisptr = new MT_RNG(seed_or_state)

If a sequence is passed instead, we want to call the second constructor. Before doing so,
we must convert the argument to an array:

140 | Chapter 8: Wrapping C++ Libraries with Cython

...
 def __cinit__(self, seed_or_state):
 cdef array state_arr
 if isinstance(seed_or_state, int):
 self._thisptr = new MT_RNG(seed_or_state)
 else:
 state_arr = array("L", seed_or_state)

This converts the seed_or_state argument into a Python array of unsigned longs and
fails with a runtime exception if the conversion is not possible.

Because we have C-level access to the array object, we can extract its underlying C array
of unsigned long integers by using state_arr.data.as_ulongs. Putting it all together,
this allows us to dispatch to the second constructor:

...
 def __cinit__(self, seed_or_state):
 # ...
 else:
 state_arr = array("L", seed_or_state)
 self._thisptr = new MT_RNG(state_arr.data.as_ulongs,
 len(state_arr))

After recompiling with this improved __cinit__, we can now create an RNG object by
passing in either an integer or a sequence of integers:

In [36]: from RNG import RNG

In [37]: r = RNG(42)

In [38]: r.rand()
Out[38]: 0.37454011439684315

In [39]: r2 = RNG(range(30, 40))

In [40]: r2.rand()
Out[40]: 0.04691027990703245

In [41]: r2.randint()
Out[41]: 2626217183L

To wrap overloaded C++ functions, we use a similar pattern. Either we can provide
several differently named functions in Python, each calling a different version of the
overloaded C++ function, or we can provide a single Python function that does the
dispatching, as we did with __cinit__.

The other form of overloading, operator overloading, is also supported by Cython. Be‐
cause Python also supports overloaded operators, exposing them to Python is much
more straightforward.

Simple Example: MT_RNG Class | 141

Operator Overloading
Cython supports most C++ operator overloads. This includes the binary and unary
arithmetic operators, the bitwise operators, the Boolean comparison operators, the pre-
and post-increment and -decrement operators, the indexing operator (square brackets),
and the function call operator (parentheses). Currently, the in-place operators (+=, -=,
etc.) are not supported. Some operators are incompatible with Python’s syntax, so Cy‐
thon provides a special cython.operators magic module to allow Python-compatible
access. Table 8-1 gives the full details.

Table 8-1. C++ operators
Operator type C++ syntax Notes

Unary and binary arithmetic
operators

operator+
operator-

operator*

operator/

operator%

Unary form takes no arguments; binary form takes an rhs. In-place
operators not currently supported.

Pre- and post-increment,
pre- and post-decrement

operator++()

operator--()

operator++(int)

operator--(int)

No arg indicates pre, int arg indicates post. Must use
cython.operator.preincrement to call.

Bitwise operators operator|

operator&

operator^

operator~

operator<<

operator>>

Bitshift operators often overloaded for input/output.

Dereferencing, comma
operators

operator,

operator*()

Must use cython.operator.comma and
cython.operator.dereference to access.

Boolean operators operator==

operator!

operator!=

operator>=

operator<=

operator>

operator<

Indexing, call operators operator[]

operator()

Cython provides no way to declare the assignment operator operator=; assignment by
value is assumed.

142 | Chapter 8: Wrapping C++ Libraries with Cython

Suppose our MT_RNG class implements the function call operator, operator. By calling
an MT_RNG instance we get back a random double on the closed [0,1] interval, essentially
forwarding to the genrand_real1 method.

We only have to add a single declaration to our cppclass block for MT_RNG:

...
 cdef cppclass MT_RNG:
 # ...
 double operator()()

Python, of course, has its own operator overloading syntax. To support calling RNG
instances in Python, we implement the __call__ magic method on our RNG extension
type:

cdef class RNG:
 # ...
 def __call__(self):
 return self._thisptr[0]()

We cannot say self._thisptr directly, as _thisptr is, of course, a pointer to an MT_RNG
object. Cython allows us to use the dot operator on a C or C++ pointer and will auto‐
matically convert it to the indirection or arrow operator, ->. Not so for operators: we
first dereference the pointer using Cython’s Python-compatible pointer-dereferencing-
by-indexing-at-zero [0] syntax, which allows us to then apply operator on it.

Alternatively, we can use the dereference Cython operator from the special
cython.operator module (Chapter 3):

from cython.operator cimport dereference as deref

cdef class RNG:
 # ...
 def __call__(self):
 return deref(self._thisptr)()

Using either self._thisptr[0] or deref(self._thisptr) has equivalent semantics
when _thisptr is a raw pointer.

After recompiling, we can now use our new operator from Python:

In [1]: from RNG import RNG

In [2]: r = RNG(10)

In [3]: r()
Out[3]: 0.7713206433158649

In [4]: [r() for i in range(3)]
Out[4]: [0.02075194661057367, 0.49458992841993227, 0.6336482317730897]

Simple Example: MT_RNG Class | 143

In some cases C++ operators are implemented as external functions rather than member
methods. For instance, suppose the binary + operator for a C++ class C is
implemented as:

inline C operator+(C lhs, const C& rhs) {
 // ...
}

Cython does not support nonmember operators, but we can simply declare the
C operator+(const C& rhs) as if it were a member-defined operator inside the
cppclass declaration, in the same way we declared the operator previously. Because
Cython does not generate any redeclarations inside a cdef extern block, this bending
of the rules will allow us to work around this limitation. By declaring the operator as a
class member, Cython sees that C instances support binary addition, even though that
addition is implemented as a nonmember function.

C++ Exceptions
Because C++ supports exceptions, Cython has features to detect when they occur and
convert them into corresponding Python exceptions automatically. It is not possible,
however, to catch C++ exceptions in a Python try/except block, nor is it possible to
throw C++ exceptions from Cython.

To enable this functionality, we simply add an except + clause to the function or method
declaration that may raise a C++ exception. For instance, to automatically convert a
C++ bad_alloc exception into a Python MemoryError, we change the MT_RNG construc‐
tor declarations like so:

cdef extern from "mt19937.h" namespace "mtrandom":
 cdef cppclass MT_RNG:
 MT_RNG(unsigned long s) except +
 MT_RNG(unsigned long init_key[], int key_length) except +

This removes the need to check whether the result of a new allocation is NULL; with an
except + clause, Cython does the check for us automatically and propagates the ex‐
ception into Python code.

Cython automatically converts most standard C++ exception types into corresponding
Python exception types. The currently supported exceptions and their Python coun‐
terparts are in Table 8-2; this list of exceptions may expand or be refined in future
releases.

144 | Chapter 8: Wrapping C++ Libraries with Cython

Table 8-2. C++-to-Python exception mapping
C++ Python

bad_alloc MemoryError

bad_cast TypeError

domain_error ValueError

invalid_argument ValueError

ios_base::failure IOError

out_of_range IndexError

overflow_error OverflowError

range_error ArithmeticError

underflow_error ArithmeticError

All others RuntimeError

The error message is set from the C++ exception’s what method.

To instruct Cython to raise a particular type of Python exception, we can append the
Python exception type to the except + clause:

...
 cdef cppclass MT_RNG:
 MT_RNG(unsigned long s) except +MemoryError
 MT_RNG(unsigned long init_key[], int key_length) except +MemoryError
 # ...

Lastly, a custom exception handler function can be used to do the C++-to-Python ex‐
ception translation manually. This handler can be defined in C++ or Cython.

To call a cdef function handler whenever a C++ method throws an exception, we
would say:

cdef int handler():
 # ...

cdef extern from "mt19937.h" namespace "mtrandom":
 cdef cppclass MT_RNG:
 MT_RNG(unsigned long init_key[], int key_length) except +handler
 # ...

If handler does not raise a Python exception, a RuntimeError is raised automatically.

Stack and Heap Allocation of C++ Instances
We’ve already seen how to wrap a simple C++ class in an extension type. This is often
the most common use of C++ from Cython, but we can, of course, use the class directly
in Cython code without exposing it to Python. For instance, if we need to simply use
the MT_RNG class without wrapping it, we can stack-allocate an MT_RNG instance, allowing

Stack and Heap Allocation of C++ Instances | 145

C++ finalization rules to automatically clean up the stack-allocated instance for us, even
in the event of exceptions (i.e., the obscurely named resource-allocation-is-initialization
pattern).

To declare and use stack-allocated C++ objects in Cython, we must declare a default
constructor for the C++ object in the cdef cppclass block:

cdef extern from "mt19937.h" namespace "mtrandom":
 cdef cppclass MT_RNG:
 MT_RNG()
 void init_genrand(unsigned long s)
 # ...

We can now use an MT_RNG object inside a function that makes and returns a list of
random values:

def make_random_list(unsigned long seed, unsigned int len):
 cdef:
 list randlist = [0] * len
 MT_RNG rng # calls default constructor
 unsigned int i
 rng.init_genrand(seed)
 for i in range(len):
 randlist[i] = rng.genrand_int32()
 return randlist

If there is no nullary constructor, then we cannot use stack-allocated C++ objects in
Cython, and we have to use a heap-allocated one. In that case, we need to ensure that
we call del on the object (likely in a try/finally block) to ensure it is deleted on the
C++ side:

def make_random_list(unsigned long seed, unsigned int len):
 cdef:
 # ...
 MT_RNG *rng
 rng = new MT_RNG(seed)
 try:
 # ...
 finally:
 del rng

Clearly the stack-allocated version is more convenient, removing the need for the try/
finally block to ensure the rng instance is cleaned up.

Besides allocation patterns, subclassing and class hierarchies are important C++ fea‐
tures, and can require some special handling in Cython.

Working with C++ Class Hierarchies
If we want to wrap an MT_RNG subclass named MT_RNGImproved with Cython, there are
techniques to handle method overriding.

146 | Chapter 8: Wrapping C++ Libraries with Cython

Suppose our MT_RNG class has a virtual method, serialize, that returns a std::string
serialization of the MT_RNG state. Because it is virtual, serialize is meant to be over‐
ridden by subclasses, which the MT_RNGImproved subclass does. The virtual keyword
is not supported or necessary in Cython, so we leave it out of any method declaration.
We can simply declare the serialize method in both the MT_RNG and MT_RNGImproved
declarations, and Cython will generate the correct code.

Handling the remaining nonvirtual inherited methods requires more work. Cython’s
cppclass declaration does not support subclassing. To work with this limitation, we
can handle nonoverridden inherited methods in two ways. We can redeclare the non‐
virtual base class methods in the subclass:

cdef extern from "mt19937.h" namespace "mtrandom":
 cdef cppclass MT_RNG:
 # ...

 cdef cppclass MT_RNGImproved:
 MT_RNGImproved()
 unsigned long genrand_int32()
 double genrand_real1()

Or we can explicitly cast a subclass pointer to the base class, thereby accessing the base
class’s nonvirtual methods:

 cdef MT_RNGImproved *rng = new MT_RNGImproved()
 return (<MT_RNG*>rng).genrand_int32()

In either case, Cython will allow us to call a method on an object only if that method is
declared explicitly in its type’s interface.

When using polymorphism in C++, we must use a pointer to the base
class. A pointer to an instance of a subclass can be assigned to the
base class’s pointer, which can then be used elsewhere.

Besides interfacing—and wrapping—ordinary C++ classes, Cython also supports tem‐
plated C++ functions and classes.

C++ Templates
The C++ standard template library (STL) has several templated functions and classes
ready for use. We can wrap and use these functions and classes from Cython.

C++ Templates | 147

Templated Functions and Cython’s Fused Types
The <algorithm> header declares many fundamental templated functions especially
designed to be used on ranges of elements. Two of the simpler templated functions are
min and max:

template <class T>
const T& min(const T& a, const T& b);

template <class T>
const T& max(const T& a, const T& b);

How do we declare and use these in Cython?

Declaration is straightforward: we use a cdef extern block as usual. To indicate that
these are templated functions, we provide a template parameter name in brackets im‐
mediately after the function’s name and before the argument list:

cdef extern from "<algorithm>" namespace "std":
 const T max[T](T a, T b) except +
 const T min[T](T a, T b) except +

Careful readers will notice that the argument types are declared as non-const value
types, and the return types are declared as const values. This code works, since C++
reference variables are passed and returned like values, and reference variables can be
assigned to a value-typed variable. Cython currently does not support returning refer‐
ence types from templated functions, but this support is likely to come in future versions.

Calling min and max from Cython is straightforward. If the templated types can be
inferred from the argument type(s), we can call the templated C++ function as if it were
nontemplated, which is frequently the case.

If the argument types are ambiguous, we can add brackets after the function name,
filling in the specific type to use for the template parameter or parameters.

The cleanest way to wrap these functions is to declare their interface in a definition file,
the details of which are covered in Chapter 6. Supposing we put the previous declara‐
tions in a definition file _algorithm.pxd, we can access the C++ min and max via the
_algorithm Cython namespace.

Fused types (Chapter 3) are ideal for wrapping templated functions such as these:

cimport cython
cimport _algorithm

ctypedef fused long_or_double:
 cython.long
 cython.double

def min(long_or_double a, long_or_double b):
 return _algorithm.min(a, b)

148 | Chapter 8: Wrapping C++ Libraries with Cython

def max(long_or_double a, long_or_double b):
 return _algorithm.max(a, b)

By using a long_or_double fused type that includes the Python-compatible numeric
types of interest, we make min and max generic templated Cython functions, providing
a clean interface. Cython automatically dispatches to the right function specialization
when min or max is called from Python.

This covers the basics of declaring, using, and wrapping templated functions; declaring
and using templated classes follows a similar pattern.

Templated Classes
Perhaps the most widely used STL container is vector: it is the workhorse container for
many C++ algorithms. How do we declare and use it in Cython?

To declare a templated class like vector, we use a cdef extern block in conjunction
with a cppclass declaration, as for a nontemplated class. To indicate that the class is
templated, we place template parameters in brackets after the class name:

cdef extern from "<vector>" namespace "std":
 cdef cppclass vector[T]:
 vector() except +
 vector(vector&) except +
 vector(size_t) except +
 vector(size_t, T&) except +
 T& operator[](size_t)
 void clear()
 void push_back(T&)

We use T as the template type, and have declared four of vector’s constructors along
with a few of vector’s more common methods. If there is more than one template
parameter, we put a comma-separated list of unique parameter names in the brackets.

Suppose we want to declare and use a vector of ints inside a wrapper function. For
templated classes, we are required to instantiate them with a specific templated type in
brackets after the templated class name:

def wrapper_func(elts):
 cdef vector[int] v
 for elt in elts:
 v.push_back(elt)
 # ...

This works for a stack-allocated vector, but creating a heap-allocated vector requires
the new operator:

def wrapper_func(elts):
 cdef vector[int] *v = new vector[int]()
 # ...

C++ Templates | 149

When heap-allocating with new, we need to ensure that we call del on the vector pointer
when we’re finished using it to prevent memory leaks.

Iterators and Nested Classes
The C++ STL uses the iterator pattern everywhere, and vectors are no exception. To
use the vector’s iterator from Cython, we declare the vector’s internal iterator as an
internal cppclass:

cdef extern from "<vector>" namespace "std":
 cdef cppclass vector[T]:
 # ...
 cppclass iterator:
 T& operator*()
 iterator operator++()
 iterator operator--()
 iterator operator+(size_t)
 iterator operator-(size_t)
 bint operator==(iterator)
 bint operator!=(iterator)
 bint operator<(iterator)
 bint operator>(iterator)
 bint operator<=(iterator)
 bint operator>=(iterator)

Suppose we want to rotate a Python list in place by shifting n elements left and putting
the shifted elements on the end. The STL has a rotate templated function declared in
<algorithm> for just this purpose. We need to pass an std::vector<T>::iterator to
indicate the beginning, middle, and end of the vector to rotate. The element pointed to
by the middle iterator is rotated to the front of the resulting list.

First we need to declare std::rotate to Cython:

cdef extern from "<algorithm>" namespace "std":
 void rotate[iter](iter first, iter middle, iter last)

We place this declaration in our _algorithm.pxd file as before.

Because rotate does not care about the values in the container object being rotated, we
can simply create a vector of void pointers that point to the Python list’s contents and
use that in our call to _algorithm.rotate.

First, the vector initialization:

def rotate_list(list ll, int rot):
 cdef vector[void*] vv
 for elt in ll:
 vv.push_back(<void*>elt)

150 | Chapter 8: Wrapping C++ Libraries with Cython

We iterate through our Python list and initialize our vv vector, casting each element to
a void pointer. Note that both the Python list ll and the C++ vector vv share references
to the same underlying Python objects.

The rotate_list function’s second argument is the number of elements to rotate by. It
can be either positive or negative, and is normalized to a positive value here:

def rotate_list(list ll, int rot):
 # ...
 if rot < -len(ll) or rot >= len(ll):
 raise IndexError()
 rot = (rot + len(ll)) % len(ll)

For convenience, let’s declare a ctypedef to make the iterator type more succinct:

ctypedef vector[void*].iterator vvit

Now the call to _algorithm.rotate is straightforward:

def rotate_list(list ll, int rot):
 # ...
 _algorithm.rotate[vvit](vv.begin(), vv.begin()+rot, vv.end())

Lastly, we create a new list out of the vector’s contents, casting back to Python objects:

def rotate_list(list ll, int rot):
 # ...
 return [<object>o for o in vv]

The entire function is only eight lines of code, three of which are declaration and error
checking. After compiling, we can try it out from Python:

In [1]: import wrap_funcs

In [2]: wrap_funcs.rotate_list(range(10), 5)
Out[2]: [5, 6, 7, 8, 9, 0, 1, 2, 3, 4]

It is remarkable that Cython makes possible such a fluid mix of Python and templated
C++, all while retaining a Python-like look and feel.

Now that we have some familiarity with interfacing with templated C++ classes and
iterators, let’s look at interfacing with the STL. Cython makes this particularly easy.

Included STL Container Class Declarations
Cython includes built-in definition files for several STL classes, primarily containers:

C++ Templates | 151

• string

• vector

• map

• set

• unordered_map

• unordered_set

• pair

• list

• queue

• priority_queue

• deque

• stack

To access any of these class declarations, we use the cimport statement with the libcpp
package–like Cython namespace, as covered in detail in Chapter 6:

from libcpp.vector cimport vector
cdef vector[int] *vec_int = new vector[int](10)

The libcpp package’s contents are located in the Cython/Includes/libcpp directory in‐
cluded with the Cython source distribution. If we are using any of these templated
classes, it is worthwhile to look at the definition file to know exactly the interface Cython
exposes.

For example, we can build up a std::map of element names to their atomic numbers in
Cython as follows:

from libcpp.string cimport string
from libcpp.map cimport map
from libcpp.pair cimport pair

def periodic_table():
 cdef map[string, int] table
 cdef pair[string, int] entry
 # Insert Hydrogen
 entry.first = b"H"; entry.second = 1
 table.insert(entry)
 # Insert Helium
 entry.first = b"He"; entry.second = 2
 table.insert(entry)
 # ...

Cython automatically converts std::map and other STL containers to and from their
Python analogues. We can use this to easily assign a Python dict to a std::map, for
example. It also allows us to return a std::map from a def function—Cython automat‐
ically copies the std::map’s contents to a new Python dict and returns that. These
conversions copy the underlying data, and are triggered when we assign (or cast) from
a statically typed Python container to a C++ container type, and vice versa.

Table 8-3 lists all currently supported built-in conversions from Python to C++
containers.

152 | Chapter 8: Wrapping C++ Libraries with Cython

Table 8-3. Python to C++ containers
From Python type To C++ type(s)

bytes, str, unicode string

mapping (dict) map, unordered_map

iterable set, unordered_set

iterable vector, list

length two iterable pair

Table 8-4 lists the allowed conversions from C++ to Python.

Table 8-4. C++ to Python containers
From C++ type To Python type

string bytes, str, unicode

map, unordered_map dict

set, unordered_set set

vector, list list

pair tuple

The automatic conversions to and from the Python string types—
bytes, str, and unicode—are influenced by the c_string_type and
c_string_encoding compiler directives (see Chapters 2 and 3). If
neither of these directives is set, then only the bytes type is conver‐
tible to and from the std::string type by default.

All conversions are recursive, so a std::map<std::pair<int, int>,

std::vector<std::string> > converts to a Python dict with tuple keys of ints and
list values of bytes objects.

This powerful feature allows us to return a supported C++ container directly from a
def or cpdef function or method, provided the container and its templated type are
supported. Cython automatically converts the container’s contents to the right Python
container.

Previous examples, such as the periodic_table function that inserts elements into a
std::map, can be more simply expressed:

from libcpp.string cimport string
from libcpp.map cimport map

def periodic_table():
 cdef map[string, int] table
 table = {"H": 1, "He": 2, "Li": 3}

C++ Templates | 153

 # ...use table in C++...
 return table

In this example, assigning a dictionary literal to table automatically converts all key/
value pairs to the corresponding C++ std::pair type and stores them in the std::map
instance. The complement works as well: returning table converts the
std::map<string, int> to a Python dictionary.

Automatic conversions also simplify working with std::vector objects: assigning a
Python list to a statically typed vector is much easier than iterating through the list
and calling push_back for each element.

Cython also knows how to use standard C++ container objects when an iterable is
required—in for loops, list comprehensions, and the like. For this to work, the C++
object must have begin and end methods that return a pointer-like iterator, which is the
case for most STL containers. This removes the need to declare and work with C++
iterators explicitly in many situations, and makes working with C++ containers feel like
Python.

For example, calling std::sort with the contents of a Python list is simple. First we
cimport from libcpp.vector and declare the std::sort templated function:

from libcpp.vector cimport vector

cdef extern from "<algorithm>" namespace "std":
 void std_sort "std::sort" [iter](iter first, iter last)

With this in place, the actual sorting function is just three lines:

def sort_list(list ll):
 cdef vector[int] vv = ll
 std_sort[vector[int].iterator](vv.begin(), vv.end())
 return vv

This example serves to demonstrate how straightforward Cython makes conversions
between Python and C++ containers, and how easy it is to call into a C++ STL function.
It is not intended to demonstrate how to sort a list: the right way to do that, of course,
is to use the list.sort method or the sorted built-in function.

Memory Management and Smart Pointers
Many C++ libraries use smart pointers, for the many advantages they provide beyond
C-style raw pointers. They help clarify and enforce pointer ownership semantics, pre‐
vent memory and resource leaks, and simplify memory management when we are
dealing with C++ exceptions. Of particular relevance to Python is the shared_ptr smart
pointer, which supports basic reference counting. As we know, CPython (and Cython,
by extension) also uses reference counting for the majority of its memory management
of Python objects. Can we get C++ shared pointers to work nicely with Python reference

154 | Chapter 8: Wrapping C++ Libraries with Cython

counting in Cython? To quote a well-known political figure’s campaign slogan, “Yes we
can!”

First, let’s declare the smart_ptr template class interface to Cython. We use the decla‐
rations from the Boost C++ library, but the C++11 version is very similar:

cdef extern from "boost/smart_ptr/shared_ptr.hpp" namespace "boost":
 cdef cppclass shared_ptr[T]:
 shared_ptr()
 shared_ptr(T *p)
 shared_ptr(const shared_ptr&)
 long use_count()
 T operator*()

Here we have declared that boost::shared_ptr has a single template parameter, used
for the type of object pointed to. It has a default constructor, a single-argument con‐
structor, and a copy constructor. Besides these, we declare the use_count method to
report the number of reference counts on this shared pointer instance, and operator*
to allow us to dereference a shared pointer.

To illustrate working with shared pointers, suppose we have an externally defined func‐
tion, histogram, that takes a std::vector<int> argument and returns a shared pointer
to a vector of integers, which is the number of integers with that value in the input
vector. This can arise when a library uses shared pointers to allow objects to share
ownership of large containers.

Say also that we want to get the average count in the histogram vector from Python.
Using our libcpp.vector and shared_ptr template class declarations, we can define a
def function, hist_sum. First, we need to get our shared pointer to a vector of integers:

from libcpp.vector cimport vector

def hist_sum(args):
 cdef:
 shared_ptr[vector[int]] ptr_hist = histogram(args)
 # ...

Now that we have our shared pointer, we can dereference it to access the underlying
vector. We need to use cython.operator.dereference to do so, since the shared_ptr
does not support indexing with operator[]:

from cython.operator cimport dereference as deref

def hist_sum(args):
 cdef:
 shared_ptr[vector[int]] ptr_hist = histogram(args)
 vector[int] hist = deref(ptr_hist)
 # ...

We now can walk through the hist vector to get the average count:

Memory Management and Smart Pointers | 155

def hist_sum(args):
 cdef:
 shared_ptr[vector[int]] ptr_hist = histogram(args)
 vector[int] hist = deref(ptr_hist)
 double weighted_sum = 0.0
 int elt, n_total = 0

 for idx, elt in enumerate(hist):
 weighted_sum += idx * elt
 n_total += elt
 return weighted_sum / n_total

The nice part about this function is that we are working with a pointer to a vector, but
we do not have to worry about memory leaks or who is responsible for cleaning it up.
The shared pointer handles that automatically for us, even if exceptions occur.

We can also use smart pointers as the attributes inside extension types. This is useful if
we want to share our C++ objects between Python and other C++ code that uses shared
pointers.

For example, suppose we want to wrap a C++ vector of integers in an extension type
and make it look like a Python list. First, we declare the vector attribute:

cdef class Vector:
 cdef shared_ptr[vector[int]] _thisptr

The __cinit__ method just creates an empty vector inside a shared_ptr:

cdef class Vector:
 cdef shared_ptr[vector[int]] _thisptr
 def __cinit__(self):
 self._thisptr = shared_ptr[vector[int]](new vector[int]())

To make our Vector act like a Python list, we can add some def methods. Every time
we want to work with the underlying vector, we need to dereference the _thisptr
attribute:

from cython.operator cimport dereference as deref

cdef class Vector:
 # ...
 def __len__(self):
 return deref(self._thisptr).size()
 def __getitem__(self, int index):
 return deref(self._thisptr)[index]
 def __setitem__(self, int index, int i):
 return deref(self._thisptr)[index] = i
 def append(self, int i):
 deref(self._thisptr).push_back(i)
 def __repr__(self):
 return repr([i for i in deref(self._thisptr)])

156 | Chapter 8: Wrapping C++ Libraries with Cython

We place Vector’s definition in vector.pyx and compile it into an extension module. It
is list-like enough to allow us to shuffle a Vector from Python:

from vector import Vector
from random import shuffle

v = Vector()
for i in range(20):
 v.append(i)
shuffle(v)
print v

When running our script test_vector.py, we see everything hangs together:

$ python test_vector.py
[19, 1, 15, 13, 12, 18, 8, 2, 16, 4, 3, 14, 17, 11, 10, 9, 0, 6, 5, 7]

To take this example further, we could implement a sort method that uses C++’s
std::sort function. Doing so is left as an exercise for the reader.

Because the _thisptr for Vector is a shared pointer, Vector instances can share own‐
ership of the underlying std::vector<int> with C++. This means that Python objects
can work with C++ objects in a nice and unobtrusive way, avoiding expensive copies,
removing ambiguities regarding pointer ownership, and allowing the two languages’
reference counting systems to work together.

Summary
This chapter covered all of Cython’s current C++ interfacing features. We learned
how to

• declare C++ namespaces, classes, and global constants;
• make an extension type to wrap a C++ class;
• use the new and del operators properly to work with C++ memory management;
• compile C++-based Cython projects;
• work with overloaded constructors, methods, functions, and operators;
• easily propagate C++ exceptions to Python;
• manage stack-allocated C++ objects;
• work with C++ type hierarchies;
• declare and use templated functions and classes;
• use included C++ STL container definition files.

Cython’s C++ support is continually improving and stabilizing. It is expected that some
of the more manual tasks in this chapter will be better supported in future releases.

Summary | 157

CHAPTER 9

Cython Profiling Tools

I’ve never been a good estimator of how long things are going to take.
— D. Knuth

If you optimize everything, you will always be unhappy.
— D. Knuth

Cython lets us easily move across the boundary between Python and C. Rather than
taking this as license to bring in C code wherever we like, however, we should consider
just how much C we want to mix with our Python. When we are wrapping a library, the
answer is usually determined for us: we need enough C to wrap our library, and enough
Python to make it nice to use. When we’re using Cython to speed up a Python module,
though, the answer is much less clear. Our goal is to bring in enough C code to get the
best results for our efforts, and no more. Cython has tools that can help us find this
sweet spot, which we cover in this chapter.

Cython Runtime Profiling
When we are optimizing Cython code, the principles, guidelines, and examples in the
rest of this book help us answer the how. But sometimes the challenge is determining
what code needs to change in the first place. I strongly recommend that, rather than
looking at code and guessing, we use profiling tools to provide data to quantify our
programs’ performance.

Python users are spoiled when it comes to profiling tools. The built-in profile module
(and its faster C implementation, cProfile) makes runtime profiling easy. On top of
that, the IPython interpreter makes profiling nearly effortless with the %timeit and %run

159

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook.

magic commands, which support profiling small statements and entire programs,
respectively.

These profiling tools work without modification on pure-Python code. But when
Python code calls into C code in an extension module or in a separate library, these
profiling tools cannot cross the language boundary. All profiling information for C-
level operations is lost.

Cython addresses this limitation: it can generate C code that plays nicely with these
runtime profiling tools, fooling them into thinking that C-level calls are regular Python
calls.

For instance, let’s start with a pure-Python version of the integration example from
Chapter 3:1

def integrate(a, b, f, N=2000):
 dx = (b-a)/N
 s = 0.0
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

We will use runtime profiling to help improve integrate’s performance.

First, we create a main.py Python script to drive integrate:

from integrate import integrate
from math import pi, sin

def sin2(x):
 return sin(x)**2

def main():
 a, b = 0.0, 2.0 * pi
 return integrate(a, b, sin2, N=400000)

To profile our function, we can use cProfile in the script itself, sorting by the internal
time spent in each function:

if __name__ == '__main__':
 import cProfile
 cProfile.run('main()', sort='time')

Running our script gives the following output:

$ python main.py
 800005 function calls in 0.394 seconds

 Ordered by: internal time

160 | Chapter 9: Cython Profiling Tools

https://github.com/cythonbook

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.189 0.189 0.394 0.394 integrate.py:2(integrate)
 400000 0.140 0.000 0.188 0.000 main.py:4(sin2)
 400000 0.048 0.000 0.048 0.000 {math.sin}
 1 0.017 0.017 0.017 0.017 {range}
 1 0.000 0.000 0.394 0.394 main.py:7(main)
 1 0.000 0.000 0.394 0.394 <string>:1(<module>)
 ...

This output is generated by the cProfile.run call. Each row in the table is the collected
runtime data for a function called in the course of running our program. The ncalls
column is, unsurprisingly, the number of times that function or method was called. The
tottime column is the total time spent in the function, not including time spent in called
functions. This is the column used to sort the output, and it usually provides the most
useful information. The first percall column is tottime divided by ncalls. The
cumtime column is the total time spent in this function including time spent in called
functions, and the second percall column is cumtime divided by ncalls. The last col‐
umn is the name of the module, the line number, and the function name for the
table row.

As expected, most time is spent in the integrate function, followed by our sin2
function.

Let’s convert integrate.py to an extension module, integrate.pyx. For now, we change
only the filename without changing the contents. Doing so requires us to compile our
extension module before using it in main.py.

We can use pyximport to compile at import time; at the top of main.py, we add this one
line before importing integrate:

import pyximport; pyximport.install()
from integrate import integrate
...

Running our script again compiles the extension module automatically and generates
the profiling output for our Cythonized version of integrate:

$ python main.py
 800004 function calls in 0.327 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.141 0.141 0.327 0.327 {integrate.integrate}
 400000 0.138 0.000 0.185 0.000 main.py:5(sin2)
 400000 0.047 0.000 0.047 0.000 {math.sin}
 1 0.000 0.000 0.327 0.327 main.py:8(main)
 1 0.000 0.000 0.327 0.327 <string>:1(<module>)
 ...

Cython Runtime Profiling | 161

Just compiling our module gives us an overall 17 percent performance boost, and im‐
proves integrate’s performance by about 25 percent. We will see just how much faster
we can make integrate by using more Cython features.

Let’s add static type information to integrate to generate more efficient code:

def integrate(double a, double b, f, int N=2000):
 cdef:
 int i
 double dx = (b-a)/N
 double s = 0.0
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

What is the effect on the runtime?

$ python main.py
 800004 function calls in 0.275 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 400000 0.133 0.000 0.176 0.000 main.py:5(sin2)
 1 0.099 0.099 0.275 0.275 {integrate.integrate}
 400000 0.043 0.000 0.043 0.000 {math.sin}
 1 0.000 0.000 0.275 0.275 main.py:8(main)
 1 0.000 0.000 0.275 0.275 <string>:1(<module>)
 ...

Static typing and a faster for loop give a modest 16 percent overall additional perfor‐
mance boost.

Let’s turn our focus on sin2—it is a pure-Python function, but if we put it in our im‐
plementation file, it is compiled. This requires us to modify integrate.pyx:

from math import sin

def sin2(x):
 return sin(x)**2

def integrate(...):
 # ...

We must also modify main.py to import sin2 from integrate.

As we can see, compiling sin2 boosts overall performance by more than a factor of two:

$ python main.py
 4 function calls in 0.103 seconds

 Ordered by: internal time

162 | Chapter 9: Cython Profiling Tools

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.103 0.103 0.103 0.103 {integrate.integrate}
 1 0.000 0.000 0.103 0.103 main.py:8(main)
 1 0.000 0.000 0.103 0.103 <string>:1(<module>)
 ...

Note that now the profiler detects and reports on only 4 function calls, whereas before
it detected all 800,000 or so. Because we are compiling sin2 and its contents, as far as
the profiler is concerned, integrate is a black box.

We can fix this by directing Cython to support runtime profiling in the generated code.
At the top of integrate.pyx, we enable the profile compiler directive globally (see
“Compiler Directives” on page 28):

cython: profile=True
from math import sin
...

The next time we run main.py, we see sin2 again:

$ python main.py
 400005 function calls in 0.180 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 400000 0.096 0.000 0.096 0.000 integrate.pyx:6(sin2)
 1 0.084 0.084 0.180 0.180 integrate.pyx:10(integrate)
 1 0.000 0.000 0.180 0.180 main.py:8(main)
 1 0.000 0.000 0.180 0.180 {integrate.integrate}
 1 0.000 0.000 0.180 0.180 <string>:1(<module>)

Runtime increased significantly, but why? In this case, the overhead introduced by the
profiler distorts the true runtime of the code being measured. Because sin2 is called
inside a loop, when Cython instruments it to be profiled, the profiling overhead is
amplified.

We still don’t see the call to math.sin, since that is called internally and not exposed to
the profiler. Cython cannot profile imported functions, only functions and methods
defined in the extension module itself.

We can selectively profile functions as well: we can remove the module-wide profiling
directive, cimport the cython magic module, and use the @cython.profile(True)
decorator with the functions we want to profile.

The sin2 function requires the most total runtime, so how can we speed it up further?
Rather than use Python’s math.sin function inside sin2, let’s use sin from the C stan‐
dard library. We only have to change the import to the right cimport in integrate.pyx
to do so:

Cython Runtime Profiling | 163

cython: profile=True
from libc.math cimport sin
...

This more than halves sin2’s runtime, making integrate the slowpoke again:

$ python main.py
 400005 function calls in 0.121 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.081 0.081 0.121 0.121 integrate.pyx:11(integrate)
 400000 0.040 0.000 0.040 0.000 integrate.pyx:7(sin2)
 1 0.000 0.000 0.121 0.121 main.py:8(main)
 1 0.000 0.000 0.121 0.121 {integrate.integrate}
 1 0.000 0.000 0.121 0.121 <string>:1(<module>)

There is more we can do to remove call overhead inside the for loop, but we leave that
as an exercise to the reader.

Let’s turn off profiling inside integrate.pyx and run our script again:

$ python main.py
 4 function calls in 0.039 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.039 0.039 0.039 0.039 {integrate.integrate}
 1 0.000 0.000 0.039 0.039 main.py:8(main)
 1 0.000 0.000 0.039 0.039 <string>:1(<module>)

We went from a pure-Python version with a 0.4-second runtime to a Cython version
that is 10 times faster: not bad. Along the way, we learned how to use the cProfile
module to help focus our efforts, and we learned how to use the profile directive to
have Cython instrument our code for us.

Performance Profiling and Annotations
Runtime profiling with cProfile and Cython’s profile directive is the first profiling
tool we should use. It directly tells us what code to focus on based on runtime
performance.

To answer the question of why a given function is slow, Cython provides compile-time
annotations, the topic of this section. Runtime profiling and compile-time annotations
together provide complementary views of the performance of our Cython code.

As we learned in Chapter 3, calling into the Python/C API is—more often than not—
slow when compared to the equivalent operation implemented in straight-C code. In
particular, when manipulating dynamically typed Python objects, Cython must gener‐

164 | Chapter 9: Cython Profiling Tools

ate code that makes many calls into the C API. Besides performing the intended oper‐
ation, the generated code must also properly handle object reference counts and perform
proper error handling, all of which incurs overhead and, incidentally, requires a lot of
logic at the C level.

This suggests a simple heuristic: if a line of Cython code generates many calls into the
Python/C API, then it is likely that that line manipulates many Python objects and, more
often than not, has poor performance. If a line translates into few lines of C and does
not call into the C API, then it does not manipulate Python objects and may very well
have good performance.

The cython compiler has an optional --annotate flag (short form: -a) that instructs
cython to generate an HTML representation of the Cython source code, known as a
code annotation. Cython color-codes each line in the annotation file according to the
number of calls into the Python/C API: a line that has many C API calls is dark yellow,
while a line with no C API calls has no highlighting. Clicking on a line in the annotation
file expands that line into its generated C code for easy inspection.

Keep in mind that using the number of C API calls as a proxy for poor
performance is a simplification; some C API calls are significantly
faster than others. Also, a function is not guaranteed to be fast sim‐
ply by virtue of not having a Py_ prefix.

Consider again our pure-Python version of the integration example:

def integrate(a, b, f, N=2000):
 dx = (b-a)/N
 s = 0.0
 for i in range(N):
 s += f(a+i*dx)
 return s * dx

There is no static typing information in this function, so all operations use the general
Python/C API calls.

If we put this code in integrate.pyx, we can create a code annotation for it:

$ cython --annotate integrate.pyx

If no compiler errors result, cython generates a file, integrate.html, which we can open
in a browser. It should look similar to Figure 9-1.

Performance Profiling and Annotations | 165

2. In this book’s print version or on a black-and-white ereader, all figures are rendered grayscale. Please try the
examples in this chapter to see the result.

Figure 9-1. Annotated integrate without static typing

Except for line 3, all lines are a deep shade of yellow.2 Clicking on line 2 expands it, as
shown in Figure 9-2. It is clear why this line is colored yellow; there are calls to PyNum
ber_Subtract and __Pyx_PyNumber_Divide as well as error handling and reference
counting routines.

Figure 9-2. Expanded line in annotated integrate

Of particular interest is the for loop, which we expand in Figure 9-3.

166 | Chapter 9: Cython Profiling Tools

https://github.com/cythonbook/examples

Figure 9-3. Expanded annotated for loop

Without typing information, this one line of Python expands into nearly 40 lines of C
code! The loop body (line 5) is similar.

Let’s add some simple static type declarations:

def integrate(double a, double b, f, int N=2000):

 cdef:
 int i
 double dx = (b-a)/N
 double s = 0.0

 for i in range(N):

Performance Profiling and Annotations | 167

 s += f(a+i*dx)
 return s * dx

After regenerating our annotated source file, we see in Figure 9-4 a significant differ‐
ence in the code highlighting.

Figure 9-4. Annotated integrate with static typing

The for loop on line 8, expanded in Figure 9-5, now has no highlighting and translates
to much more efficient code.

Figure 9-5. Expanded annotated for loop with static typing

Also noteworthy is the loop body, which remains highlighted. A moment’s thought
reveals why: func is a dynamic Python object that we are calling in each loop iteration.
We can see what the C code has to do to call a general Python object by clicking on line
9. Even though we statically typed a, i, dx, and s, we must convert the func argument
to a Python object (PyFloat_FromDouble), create an argument tuple with our Python
float (PyTuple_New and PyTuple_SET_ITEM), call func with this argument tuple
(__Pyx_PyObject_Call), get the resulting Python object, and add it to s in place
(PyNumber_InPlaceAdd). All the while, we need to do proper reference counting and
error checking.

168 | Chapter 9: Cython Profiling Tools

3. In this example, because no division is taking place inside the for loop, using the cdivision directive has
essentially no effect on performance. We use it here to show how it removes all C API calls from the dx
initialization. We could remove the cdivision directive without affecting performance.

The line is yellow because the annotation heuristic picks up all the Python/C API calls
and highlights accordingly. It makes it easy to see that our loop body is where we should
focus our efforts to improve this function’s performance. We could, for example, make
func an instance of an extension type with a call cpdef method, and inside our for
loop, we could call func.call instead. This would allow us to implement compiled
versions of our callback function in Cython while providing a way to subclass them in
Python.

Often the first and last lines of a function are highlighted a deep shade of yellow even
when all operations are C-level and should be fast. This is because the function setup
and teardown logic in a def or cpdef function is grouped together during annotation;
this often involves several calls into the C API and leads to the highlighting we see here.
This serves as a visual indicator of Python’s function call overhead. A cdef function
does not have this overhead and is not highlighted provided no Python objects are
involved.

To see this, let’s write a cdef version of integrate called c_integrate. We type func as
a C function pointer and turn on the cdivision compiler directive while we’re at it:3

cimport cython

@cython.cdivision(True)
cdef double c_integrate(double a, double b, double (*f)(double), int N=2000):

 cdef:
 int i
 double dx = (b-a)/N
 double s = 0.0

 for i in range(N):
 s += f(a+i*dx)
 return s * dx

The annotation for c_integrate (Figure 9-6) is encouraging—the entire function has
no highlighting, indicating no C API calls were generated.

Performance Profiling and Annotations | 169

Figure 9-6. Annotated integrate without C API calls

This comes with a convenience tradeoff, of course: we lose the ability to call c_integrate
from Python, so we have to create other entry points to do so. We can use c_integrate
from other Cython code, of course.

Code annotations are a powerful feature to help focus efforts on possible performance
bottlenecks. It is up to us to use annotations effectively. If a line of code makes many C
API calls but is itself run only once, its overhead is not an important factor. On the other
hand, if the code annotation indicates that a line in an inner for loop makes many C
API calls, then it is likely worth the effort to improve its performance.

Keep in mind that Cython’s annotation feature provides static, compile-time perfor‐
mance data and uses simple heuristics to suggest which lines of code need attention.
Using it in conjunction with Cython’s runtime profiling tools makes for a powerful
combination.

Summary
The cardinal rule of code optimization is measure, don’t guess. Using annotations and
runtime profiling together, we can let Cython tell us what code needs attention rather
than guessing ourselves. Runtime profiling, which should always be the first tool we use
to acquire quantitative data, tells us what routines to focus on. Code annotations can
then help us determine why specific lines are slow, and can help us remove C API calls
from the generated source. We split profiling and annotations into separate sections in
this chapter, but in practice, their usage is often finely interleaved.

170 | Chapter 9: Cython Profiling Tools

CHAPTER 10

Cython, NumPy, and Typed Memoryviews

All problems in computer science can be solved by another level of
indirection, except, of course, for the problem of too many indirections.

— D. Wheeler

Two great qualities of Cython are its breadth and maturity: it compiles nearly all Python
code (and whatever it cannot handle is typically straightforward to address); it brings
the power and control of C’s type system to Python; and it integrates with external C
and C++ code with ease. The task for this chapter is to round out Cython’s capabilities
and cover Cython’s array features—which include support for NumPy arrays—in depth.

We have seen how well Cython supports built-in containers like list, tuple, dict, and
set. These container objects are very easy to use, can contain any type of Python object,
and are highly optimized for object lookup, assignment, and retrieval. The way the list
type implements storage and retrieval is very different from dict, but from an imple‐
mentation perspective, containers all have one thing in common: they all store references
to Python objects. If we have a Python list of one million ints, every element in that list,
at the C level, is a pointer to a boxed-up PyObject. Converting such a list to a C array
of C ints is expensive, requiring us to iterate through the list and convert each PyOb
ject to a C int, all the while doing proper error checking.

For homogeneous containers (e.g., a list containing nothing but floats), we can do
much better in terms of storage overhead and performance. Large arrays of homoge‐
neous numeric types are common, and not just in numerical programming contexts.
Furthermore, CPUs and modern memory hierarchies are optimized to work with such
arrays. C has fixed-size and heap-allocated arrays. C++ has the std::vector workhorse
STL templated type. What we want is a way to represent and work with a homogeneous
contiguous array, or buffer, of unboxed data types in Python.

171

1. The new buffer protocol is also referred to as PEP-3118, referring to the Python Enhancement Proposal that
is the protocol’s authoritative source of documentation.

Enter Python buffers and the new Python buffer protocol. Buffers allow us to represent
contiguous or simply strided unboxed data of a single data type. NumPy arrays—the
most widely used array type in Python—support the buffer protocol. It is useful to think
of buffers as simplified NumPy arrays.

Using buffers effectively is often the key to obtaining C-level performance from Cython
code. Fortunately, Cython makes it particularly easy to work with buffers. It has first-
class support for the new buffer protocol and, with it, NumPy arrays.

The Power of the New Buffer Protocol
The new buffer protocol is a C-level protocol.1 Python objects can implement the pro‐
tocol, but it does not affect their interface at the Python level. The protocol is supported
in all Python 3 versions and has been backported to Python 2.6 and later. It defines a
C-level struct that has a data buffer and metadata to describe the buffer’s layout, data
type, and read and write permissions. It also defines the API that an object supporting
the protocol must implement.

The new buffer protocol’s most important feature is its ability to
represent the same underlying data in different ways. It allows
NumPy arrays, several Python built-in types, and Cython-level
array-like objects to share the same data without copying. With
Cython, we can also easily extend the buffer protocol to work with
data coming from an external library.

We do not cover the protocol’s details here; it is thoroughly documented in Python’s C
API reference manual. Thankfully, Cython allows us to work with buffers without hav‐
ing to know the details of the protocol. It is sufficient to know that, when working with
buffers, we can efficiently access their underlying data without copying, reducing
overhead.

What types implement the protocol?
NumPy ndarray

The well-known and widely used NumPy package has an ndarray object that sup‐
ports the buffer protocol, making it a valid Python buffer.

Built-in str (Py 2)
The built-in string type in Python 2.6 and 2.7 implements the protocol. The Unicode
type in Python 2 and the string type in Python 3, however, do not.

172 | Chapter 10: Cython, NumPy, and Typed Memoryviews

http://legacy.python.org/dev/peps/pep-3118/
https://docs.python.org/2/c-api/buffer.html
https://docs.python.org/2/c-api/buffer.html

Built-in bytes and bytearray types
The bytes and bytearray types in all Python versions implement the protocol.

Standard library array.array
The array.array Python standard library type implements a list-like array type
that supports the protocol.

Standard library ctypes arrays
Arrays in the ctypes package also implement the protocol.

Various third-party types
For instance, the Python Imaging Library (PIL) implements the protocol for various
image types.

The memoryview Type
There is another built-in Python type, memoryview, whose sole purpose is to represent
a C-level buffer at the Python level. We create a memoryview object by passing the
memoryview callable an object that implements the protocol, like a bytes object:

$ ipython --no-banner

In [1]: bb = b"These are the times that try men's souls."

In [2]: memv = memoryview(bb)

In [3]: memv
Out[3]: <memory at 0x101955348>

Here, memv is an object that shares data with the bytes string.

Playing with a memoryview object gives us a feel for what buffers are doing at the C level.

For instance, we can access data from the underlying buffer by indexing:

In [4]: memv[0]
Out[4]: 'T'

In [5]: memv[-1]
Out[5]: '.'

Slicing returns another memoryview, which also shares the underlying bytes data:

In [6]: memv[:10]
Out[6]: <memory at 0x102a223e0>

In [7]: memv[:10][0]
Out[7]: 'T'

The Power of the New Buffer Protocol | 173

We can slice a memoryview with arbitrary start, stop, and step val‐
ues, allowing us to efficiently select only the data elements of inter‐
est. In this way, memoryview objects provide functionality beyond
having multiple variables referring to the same object.

Because a bytes object is immutable, a memoryview of a bytes object is readonly:

In [8]: memv.readonly
Out[8]: True

In [9]: memv[0] = 'F'
...
TypeError: cannot modify read-only memory

If, instead, we take a memoryview of a mutable buffer like bytearray, we can modify its
data. First, let’s make two memoryviews that share an underlying buffer:

In [10]: ba = bytearray(b"If the facts don't fit the theory, change the facts.")

In [11]: mutable1 = memoryview(ba)

In [12]: mutable2 = mutable1[:10]

Modifying the mutable1 memoryview modifies it in the original bytearray and in
mutable2 as well:

In [13]: mutable2[0]
Out[13]: 'I'

In [14]: mutable1[0] = "A"

In [15]: mutable2[0]
Out[15]: 'A'

In [16]: ba[:1]
Out[16]: bytearray(b'A')

A memoryview has several attributes that query the underlying buffer’s metadata. We
have already seen the readonly attribute. For something a bit more interesting, let’s take
a memoryview of a multidimensional NumPy array:

In [17]: import numpy as np

In [18]: np_mv = memoryview(np.ones((10, 20, 30)))

We can ask for the number of dimensions using ndim:

In [19]: np_mv.ndim
Out[19]: 3L

And we can see the extent of the memoryview in each dimension with the shape attribute:

174 | Chapter 10: Cython, NumPy, and Typed Memoryviews

In [20]: np_mv.shape
Out[20]: (10L, 20L, 30L)

memoryviews also have a strides attribute, which specifies the number of bytes sepa‐
rating elements in the buffer in that dimension:

In [21]: np_mv.strides
Out[21]: (4800L, 240L, 8L)

Looking at strides, we can tell that the buffer is C contiguous in memory, as the skip
in the last dimension is smallest and matches np_mv.itemsize.

The strides of an array indicates the number of bytes separating
elements in the array in that dimension. A NumPy array also has a
strides attribute, and more details about strides and how it is used
can be found in NumPy’s strides documentation.

The underlying data type comes from the format attribute, which gives back a format
string:

In [22]: np_mv.format
Out[22]: 'd'

Structured data types are supported as well. First, let’s create a NumPy structured dtype
with fields a and b with data types int8 and complex128, respectively:

In [23]: dt = np.dtype([('a', np.int8), ('b', np.complex128)])

In [24]: dt
Out[24]: dtype([('a', 'i1'), ('b', '<c16')])

We can now make a memoryview from an empty NumPy array with our new dtype:

In [25]: structured_mv = memoryview(np.empty((10,), dtype=dt))

The memoryview’s format string comes from the struct standard library module’s spec‐
ification, and for structured types is rather cryptic:

In [26]: structured_mv.format
Out[26]: 'T{b:a:=Zd:b:}'

We leave the details of memoryview format strings to the official documentation; thank‐
fully, we do not have to work with them directly. We can rest assured that buffers and
memoryview objects work with simple scalar types as well as user-defined structured
types.

How do memoryviews and buffer objects translate to Cython? Given that Cython lives
between Python and C, it is ideally suited to work with memoryview objects and the
buffer protocol at the C level.

The Power of the New Buffer Protocol | 175

http://bit.ly/strides_docs

2. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

Typed Memoryviews
Cython has a C-level type, the typed memoryview, that conceptually overlaps with the
Python memoryview type and expands on it. As suggested by the name, a typed mem‐
oryview is used to view (i.e., share) data from a buffer-producing object. Because a typed
memoryview operates at the C level, it has minimal Python overhead and is very effi‐
cient. A typed memoryview has a memoryview-like interface, so it is easier to use than
working with C-level buffers directly. And because a typed memoryview is designed to
work with the buffer protocol, it supports any buffer-producing object efficiently, al‐
lowing sharing of data buffers without copying.

Let’s see an example.

Typed Memoryview Example
Suppose we want to work with a buffer of one-dimensional data efficiently in Cython.
We do not care how the data is created at the Python level; we just want to access it in
an efficient way.

Let’s create a def function in Cython that has a typed memoryview argument:2

def summer(double[:] mv):
 """Sums its argument's contents."""
 # ...

The double[:] mv syntax declares mv to be a typed memoryview. The double specifies
the memoryview’s underlying data type, and the single colon in brackets indicates a
one-dimensional memoryview object.

When we call summer from Python, we pass in a Python object that is implicitly assigned
to mv as part of the usual function calling process. When an object is assigned to a typed
memoryview, the memoryview attempts to access the object’s underlying data buffer. If
the passed object cannot provide a buffer—that is, it does not support the protocol—a
ValueError is raised. If it does support the protocol, then it provides a C-level buffer
for the memoryview to use.

Iterating through mv like a regular Python object is supported:

def summer(double[:] mv):
 """Sums its argument's contents."""
 cdef double d, ss = 0.0
 for d in mv:
 ss += d
 return ss

176 | Chapter 10: Cython, NumPy, and Typed Memoryviews

https://github.com/cythonbook/examples

To play with this code (memviews.pyx) from IPython, we use pyximport to quickly
compile this function at import time:

$ ipython --no-banner

In [1]: import pyximport; pyximport.install()
Out[1]: (None, <pyximport.pyximport.PyxImporter at 0x101c6c450>)

In [2]: import memviews

Let’s create a million-element NumPy array to test:

In [3]: import numpy as np

In [4]: arr = np.ones((10**6,), dtype=np.double)

Now we can pass arr to memviews.summer:

In [5]: memviews.summer(arr)
Out[5]: 1000000.0

It also works with array.array objects. First, let’s create a million-element array:

In [6]: from array import array

In [7]: a = array('d', [1]*10**6)

In [8]: len(a)
Out[8]: 1000000

We can pass a to memviews.summer and it works automatically in Python 3. In Python
2, we have to make sure we cimport cpython.array in our Cython source, which allows
Cython to work with array.array objects:

In [9]: memviews.summer(a)
Out[9]: 1000000.0

This implementation of summer is not particularly efficient, however:

In [10]: %timeit memviews.summer(arr)
1 loops, best of 3: 262 ms per loop

When iterating through a typed memoryview, Cython essentially treats it as a general
Python iterator, calling into the Python/C API for every access. We can do better.

C-Level Access to Typed Memoryview Data
Typed memoryviews are designed for C-style access with no Python overhead. A better
way to add mv’s elements is:

def summer(double[:] mv):
 """Sums its argument's contents."""
 cdef:
 double ss = 0.0

Typed Memoryviews | 177

 int i, N

 N = mv.shape[0]
 for i in range(N):
 ss += mv[i]
 return ss

This version has much better performance: about 1 millisecond for our million-element
array. When indexing into a typed memoryview with a typed integer, Cython generates
code that bypasses Python/C API calls and indexes into the underlying buffer directly.
This is the source of our large speedup. But we can do better still.

Trading Safety for Performance
Every time we access our memoryview, Cython checks that the index is in bounds. If it
is out of bounds, Cython raises an IndexError. Also, Cython allows us to index into
memoryviews with negative indices (i.e., index wraparound) just like Python lists.

In our summer function, we iterate through the memoryview once, and do not do any‐
thing fancy. We know ahead of time that we never index with an out-of-bounds or
negative index, so we can instruct Cython to turn off these checks for better perfor‐
mance. To do so, we use the cython special module with the boundscheck and
wraparound compiler directives (see “Compiler Directives” on page 28):

from cython cimport boundscheck, wraparound

def summer(double[:] mv):
 # ...
 with boundscheck(False), wraparound(False):
 for i in range(N):
 ss += mv[i]
 # ...

We modified our original summer definition by placing our loop inside a context man‐
ager (i.e., a with block) that turns off bounds and wraparound checking when accessing
our memoryview. These modifications are in effect for the duration of the context
manager. The result is a small performance improvement and more efficient code gen‐
eration. It is up to us to ensure that we do not index out of bounds or with a negative
index; doing so could lead to a segmentation fault.

To turn off bounds and wraparound checking for the entire function, we use the dec‐
orator form of the directives and remove the context manager form:

from cython cimport boundscheck, wraparound

@boundscheck(False)
@wraparound(False)
def summer(double[:] mv):
 # ...

178 | Chapter 10: Cython, NumPy, and Typed Memoryviews

 for i in range(N):
 ss += mv[i]
 # etc.

To turn off bounds and wraparound checking everywhere for an entire extension mod‐
ule, we use a compiler directive in a special Cython comment at the top of our file:

cython: boundscheck=False
cython: wraparound=False

def summer(double[:] mv):
 # ...
 for i in range(N):
 ss += mv[i]
 # etc.

We can also globally enable these directives when compiling by means of the
--directive flag; see Chapter 2.

The different scope levels for these directives—context manager, dec‐
orator, and module global—provide precise control over where the
directives are in effect. They can be easily disabled for development
and debugging, and easily enabled for production runs.

With these performance optimizations in place, the performance of our summer function
is the same as that of the equivalent NumPy sum method:

In [1]: import numpy as np

In [2]: arr = np.ones((10**6,), dtype=np.double)

In [3]: %timeit arr.sum()
1000 loops, best of 3: 1.01 ms per loop

A C version of summer has the same performance as our typed memoryview version,
when accounting for Python call overhead.

So, what have we learned? We saw how to declare a simple typed memoryview, we saw
how indexing a typed memoryview with an integral argument efficiently accesses the
memoryview’s underlying buffer, and we saw how to use the boundscheck and
wraparound directives to generate even more efficient code, understanding when it is
safe to do so.

There are many more details to cover, starting with the syntax and semantics of typed
memoryview declaration.

Declaring Typed Memoryviews
When declaring typed memoryviews, we can control many attributes:

Typed Memoryviews | 179

Element type
The element type of a typed memoryview may be a numeric scalar type like int,
float, or double complex; it may be a ctypedef alias; or it may be a structured
type declared with cdef struct, for example. There is initial (and still developing)
support for generic fused types as well—see the sidebar “Typed Memoryviews and
Fused Types” on page 182.

Dimensionality
Typed memoryviews (currently) may have up to seven dimensions. To declare a
three-dimensional typed memoryview, we use three comma-separated colons in
the bracketed dimension spec after the element type—for example,
double[:, :, :].

Contiguous or strided data packing
A strided dimension—declared with a single colon—in a typed memoryview is
compatible with a strided (i.e., noncontiguous and regularly spaced) buffer dimen‐
sion. This can result when the typed memoryview accesses the underlying data from
a NumPy array that is a strided view of another array, for example. A contiguous
dimension is more restrictive: the dimension must be contiguous in memory, and
this is enforced when the typed memoryview accesses the underlying data at run‐
time. Because strided access is more general, it is the default.

C or Fortran contiguity
C- or Fortran-contiguous typed memoryviews are important cases with specific
data packing constraints. C-contiguous—or column-major—layout means that the
buffer as a whole is contiguous in memory, and, if multidimensional, that the
memoryview’s last dimension is also contiguous. Fortran-contiguous—or row-
major—layout means that the entire buffer is contiguous in memory, and, if mul‐
tidimensional, that the first dimension is also contiguous. When possible, it is ad‐
vantageous from a performance standpoint to declare arrays as C or Fortran con‐
tiguous, as this enables Cython to generate faster code that does not have to take
strided access into account.

Direct or indirect access
Direct access is the default and covers nearly all use cases—it specifies that this
dimension can use straightforward indexing arithmetic to directly access the un‐
derlying data. If indirect access is specified for a dimension, the underlying buffer
stores a pointer to the rest of the array that must be dereferenced on access (hence
indirect). In part because NumPy does not currently support indirect access, this
access specification is rarely used, and for that reason direct access is the default.

If we declare a typed memoryview with a single colon in each dimension’s slot, the typed
memoryview can acquire a buffer from an object of the same dimensionality and with
either strided or contiguous packing.

180 | Chapter 10: Cython, NumPy, and Typed Memoryviews

For example, consider the default typed memoryview declaration for a three-
dimensional object:

cdef int[:, :, :] mv

This is the most general and most flexible typed memoryview declaration. We can assign
to mv, and thereby acquire a buffer from, any three-dimensional NumPy array with the
int data type:

mv = np.empty((10, 20, 30), dtype=np.int32)

The mv typed memoryview can also acquire a buffer from a Fortran-ordered array, since
each dimension has strided packing:

mv = np.ones((10, 20, 30), dtype=np.int32, order='F')

Lastly, it can acquire a buffer from a fully strided ndarray:

arr = np.ones((13, 17, 19), dtype=np.int32)
mv = arr[4:10:2, ::3, 5::-2]

When indexing into mv, Cython generates indexing code that takes the array’s strides
into account. If we are willing to trade some flexibility for speed, C- or Fortran-
contiguous typed memoryviews can be indexed more efficiently.

Declaring a C-contiguous typed memoryview requires a simple modification to the
strided version: all dimensions except the last are specified with a single colon, and the
last dimension is specified with two colons followed by a literal 1. The mnemonic is that
the last dimension has a unitary stride (i.e., is contiguous in memory), hence C contig‐
uous.

For example, to declare a two-dimensional C-contiguous typed memoryview, we
would say:

cdef float[:, ::1] c_contig_mv

We can assign a C-contiguous NumPy array to it. C contiguous is the default layout for
all NumPy array-creation functions:

c_contig_mv = np.ones((3, 4), dtype=np.float32)

But assigning a Fortran-ordered or a strided array to c_contig_mv raises a runtime
ValueError:

c_contig_mv = np.ones((3, 4), dtype=np.float32, order='F')
#=> ValueError: ndarray is not C-contiguous

arr = np.ones((3, 4), dtype=np.float32)
c_contig_mv = arr[:, ::2]
#=> ValueError: ndarray is not C-contiguous

In contrast to the C-contiguous version, a Fortran-contiguous typed memoryview has
the unitary stride in the first dimension:

Typed Memoryviews | 181

cdef double[::1, :] f_contig_mv = np.ones((3, 4), dtype=np.float64, order='F')

The f_contig_mv cannot acquire a buffer from a C-contiguous or strided buffer-
supporting object.

One-dimensional contiguous typed memoryviews are simultaneously C and Fortran
contiguous:

cdef float complex[::1] both_ways = np.zeros((100,), dtype=np.complex64)
...
both_ways = np.empty((73,), dtype=np.complex64, order='F')

These three typed memoryview declarations—fully strided, C contiguous, and Fortran
contiguous—cover the vast majority of use cases. For the common case where all arrays
are C contiguous, it is recommended to use C-contiguous memoryviews: it is the most
common memory layout, it is required when we are working with external C or C++
libraries, and the performance improvements it allows are worth the extra syntax and
small loss in flexibility. In many situations the ValueError that results when assigning
a non-C-contiguous buffer to a C-contiguous typed memoryview is a feature: it noisily
tells us when an incompatible (strided or Fortran-contiguous) array has sneaked
through.

If the application is Fortran-centric, then Fortran-contiguous memoryviews are
preferable.

NumPy provides the ascontiguousarray and asfortranarray conversion functions,
which take an array-like object as an argument and return a guaranteed C- or Fortran-
contiguous NumPy array, respectively. Each returns the argument unmodified when it
is already C or Fortran contiguous, so they are as efficient as can be expected.

Fully strided typed memoryviews are valuable when we are iterating through an array
once and the input array’s layout is ambiguous. In these situations, the overhead of
manually creating a contiguous copy for use by contiguous memoryviews may outweigh
the performance gain from contiguous access.

Typed Memoryviews and Fused Types
We can use Cython’s nascent fused types for a typed memoryview’s element type to
provide more generalization and flexibility. This comes with the usual restrictions for
fused types (see the sidebar “Fused Types and Generic Programming” in Chapter 3).
The fused type used with the typed memoryview must be used to declare at least one
argument type so that Cython can determine which fused type specialization to dispatch
to at compile time or runtime.

For instance, suppose we want to declare a cdef, cpdef, or def function that generalizes
the preceding summer function to accept either a float or double strided and one-

182 | Chapter 10: Cython, NumPy, and Typed Memoryviews

dimensional typed memoryview. We can do so using the cython.floating built-in
fused type:

cimport cython

cpdef cython.floating generic_summer(cython.floating[:] mv):
 cdef cython.floating f, ss = 0.0
 for f in mv:
 ss += f
 return ss

Because the cython.floating fused type is used for the mv argument, it can also be used
for the internal f and ss variable types.

With this definition, generic_summer can accept either a float or a double array, unlike
the original summer function, which is restricted to buffers of double elements only:

import numpy as np
double_array = np.arange(10., dtype=np.double)
float_array = np.asarray(double_array, dtype=np.float)
print generic_summer(double_array)
#=> 1000000.0
print generic_summer(float_array)
#=> 1000000.0

Because generic_summer is a cpdef function, it can also be called from Cython with a
typed memoryview argument:

import numpy as np
cdef double[:] double_array = np.arange(10., dtype=np.double)
cdef float[:] float_array = np.asarray(double_array, dtype=np.float)
print generic_summer(double_array)
#=> 1000000.0
print generic_summer(float_array)
#=> 1000000.0

The combination of fused types and typed memoryviews allows typed memoryviews to
generalize not only the manner in which data is accessed, but also the underlying data
type.

Using Typed Memoryviews
Once we have declared a typed memoryview, we must assign a buffer-supporting object
to it. Doing so causes the typed memoryview to acquire (or view) a buffer from the
righthand-side object. The assigned-to typed memoryview shares access with the ob‐
ject’s underlying buffer.

If we forget to acquire a buffer with a typed memoryview, we cannot perform any op‐
erations with it that require a buffer. Doing so will result in runtime exceptions.

What operations do typed memoryviews support?

Typed Memoryviews | 183

We can access and modify individual elements by indexing into the typed memoryview
in a NumPy-like fashion:

cdef int[:, :] mv = obj
print(mv[10, -20]) # access
mv[0, -1] = 3 # modify

As we saw previously, typed memoryviews can be indexed efficiently, especially when
we turn off bounds checking and wraparound checking:

from cython cimport boundscheck, wraparound

def mv_sum(int[:, ::1] mv):
 cdef int N, M, i, j
 cdef long s=0
 N = mv.shape[0]; M = mv.shape[1]
 with boundscheck(False), wraparound(False):
 for i in range(N):
 for j in range(M):
 s += mv[i,j]
 return s

To modify a memoryview in its entirety, thereby modifying the contents of the buffer
it views, we can use slice assignment with an ellipsis (...); to modify a sliceable section,
we can use regular slice assignment. Doing either copies data from the righthand side.
The righthand side can be a scalar:

cdef double[:, :] mv = np.empty((10, 20))

mv[...] = math.pi

or it can be another memoryview with the same element type and of the right shape:

cdef double[:, :] mv1 = np.zeros((10, 20))
cdef double[:, ::1] mv2 = np.ones((20, 40))

mv1[::2, ::2] = mv2[1:11:2, 10:40:3]

If the shapes of the lefthand and righthand sides do not match, a runtime ValueError
will be raised.

When we intend to copy data into a typed memoryview, slice assign‐
ment is necessary. If instead of slice assignment we had used regular
assignment, then no copy would be made. Regular assignment with
typed memoryviews results in another typed memoryview sharing
the righthand side’s underlying buffer. This behavior is conceptually
—if not precisely—analogous to that of Python lists, where slice as‐
signment copies data, and regular assignment simply creates anoth‐
er variable by which to access the same data.

184 | Chapter 10: Cython, NumPy, and Typed Memoryviews

We can also use the copy or copy_fortran method to generate a C- or Fortran-
contiguous copy of a memoryview’s buffer, respectively.

Once a buffer has been acquired, we can slice it like a NumPy ndarray to get another
typed memoryview that shares the buffer:

cdef float[:, :, ::1] mv = obj

cdef float[:, :] two_dee_mv = mv[:, 0, :]

The usual start, stop, and step arguments are allowed with slicing:

two_dee_mv[...] = mv[4:10:2, ::3, -1]

Like NumPy arrays, typed memoryviews support partial indexing, which results in a
typed memoryview slice:

cdef int[:, :, :] mv = obj

assert mv[10].shape == mv[10, ...].shape == mv[10, :, :].shape

Also as with NumPy arrays, we can insert new dimensions into typed memoryviews
with None:

cdef double[:] mv = np.ones((50,))

assert mv[None, :].shape == (1, 50)
assert mv[:, None].shape == (50, 1)

Unlike NumPy arrays, however, typed memoryviews do not support universal func‐
tions, so no broadcasting operations are possible other than simple scalar assignment.
But we can efficiently (i.e., without copying) make a NumPy array from a typed mem‐
oryview, since typed memoryviews themselves support the buffer protocol:

cdef float[:] rows = np.arange((100,), dtype=np.float32)
cdef float[:] cols = rows

broadcasting sum
plane = np.asarray(rows[:,None]) + np.asarray(cols[None,:])

And lastly, to transpose a typed memoryview we use the T attribute, as with a NumPy
ndarray. Transposing a C-contiguous typed memoryview results in a Fortran-
contiguous one:

cdef int[:, ::1] c_contig = obj
cdef int[::1, :] f_contig = c_contig.T

It is helpful to think of typed memoryviews as very flexible Cython-
space objects that allow efficient sharing, indexing, and modifica‐
tion of homogeneous data. They have many of the core features of
NumPy arrays, and what features they do not have are easily ad‐
dressed by their efficient interoperability with NumPy.

Typed Memoryviews | 185

But typed memoryviews go beyond the buffer protocol—they can be used to view C-
level arrays as well.

Original Buffer Syntax
Before typed memoryviews, Cython had different syntax for working efficiently with
NumPy arrays and other buffer-supporting objects. This original buffer syntax is still
in use, but it has been superseded by typed memoryviews, which provide more features
and cleaner syntax.

An example of the original buffer syntax, adapted from Cython’s online documenta‐
tion, is:

cimport numpy as np

def convolve(np.ndarray[double, ndim=2] f,
 np.ndarray[double, ndim=2] g):
 cdef:
 np.ndarray[double, ndim=2] h
 # ...other static declarations elided...
 h = np.zeros((xmax, ymax), dtype=np.double_t)

The convolve function uses three NumPy buffers—f, g, and h—each of which is de‐
clared with Cython’s original NumPy buffer syntax. This syntax uses np.ndarray to
declare the type of the object exposing the buffer interface, and places the C data type
for the array’s elements inside square brackets after np.ndarray. Because these buffers
are all two-dimensional, the ndim=2 attribute is included inside the square brackets.

The body of convolve loops over f and g to compute the two-dimensional convolution
and store the result in h. The original buffer syntax also allows Cython to generate
efficient indexing code.

We can translate convolve to use typed memoryviews instead. The body of convolve
remains unchanged; only the array declarations need be modified:

def convolve(double[:, ::1] f, double[:, ::1] g):
 cdef:
 double[:, ::1] h
 # ...
 # ...

Here we use the syntax for C-contiguous typed memoryviews, which is appropriate for
when we know the input arrays are standard unstrided arrays.

Besides a cleaner syntax, what benefits do typed memoryviews bring over the original
syntax?

186 | Chapter 10: Cython, NumPy, and Typed Memoryviews

http://docs.cython.org/src/userguide/memoryviews.html#
http://docs.cython.org/src/userguide/memoryviews.html#

• Typed memoryviews can work with a wider range of buffer-supporting objects:
NumPy arrays, Python memoryview objects, array.array objects, and any other
type that supports the new buffer protocol. They can also work with C arrays. They
are therefore more general than the NumPy array buffer syntax, which is restricted
to work with NumPy arrays only.

• Typed memoryviews can be used in any scope. This includes module scope; argu‐
ments for def, cpdef, or cdef functions or methods; function or method local scope;
and cdef class attribute scope. The NumPy buffer syntax can be used only in
function-local scope and for def function arguments.

• Typed memoryviews have many more options that provide precise control: con‐
tiguous or strided data packing, C or Fortran contiguity, and direct or indirect data
access. Some of these options can be controlled on a dimension-by-dimension basis.
The NumPy array buffer syntax does not provide this level of control.

• In all circumstances, typed memoryviews match or exceed the original buffer syn‐
tax’s performance.

Updating the original buffer syntax to use typed memoryviews is straightforward, as we
saw in the previous example. Besides the small time and testing investment required to
update, there are very few (if any) reasons to prefer the original buffer syntax to typed
memoryviews.

Beyond Buffers
So far, we have assigned various types of Python objects to typed memoryviews: NumPy
ndarray objects, array.array objects, bytes objects, and bytearray objects. NumPy
arrays are the most common in practice, given NumPy’s ubiquity, flexibility, and ex‐
pressiveness. Beyond Python-space objects, however, typed memoryviews can also
work with C-level arrays: either dynamic heap-allocated arrays or fixed-size stack-
allocated arrays.

To view a C array with a memoryview, we simply assign the array to the memoryview.
If the array is fixed size (or complete), the righthand side of the assignment can be the
array’s name only. Cython has enough information to keep track of the array’s size:

cdef int a[3][5][7]
cdef int[:, :, ::1] mv = a

mv[...] = 0

In this example we declare mv as a C-contiguous memoryview, as fixed-size arrays are
always C contiguous. The last line initializes the array a to all zeros, using slice assign‐
ment and broadcasting.

Typed Memoryviews | 187

If we have a dynamically allocated C array rather than a fixed-size array, Cython does
not know its extent, but we can still use it with typed memoryviews.

First, the dynamic array allocation:

from libc.stdlib cimport malloc

def dynamic(size_t N, size_t M):
 cdef long *arr = <long*>malloc(N * M * sizeof(long))

We can certainly use arr inside our function directly, but it would require that we
manually do index calculations. For higher-dimensional arrays, this is inconvenient.
Let’s interact with our dynamic array via the typed-memoryview interface.

Suppose we try to assign our dynamic array to a typed memoryview, as in the fixed-size
array example:

def dynamic(size_t N, size_t M):
 cdef long *arr = <long*>malloc(N * M * sizeof(long))
 cdef long[:, ::1] mv = arr

This does not compile, resulting in the error: "Cannot convert long * to

memoryviewslice". Part of the reason is that Cython knows only that arr is a long
pointer. We have to give Cython more information to indicate that arr is convertible to
a typed memoryview. That hint comes in the form of a typed memoryview cast:

def dynamic(size_t N, size_t M):
 cdef long *arr = <long*>malloc(N * M * sizeof(long))
 cdef long[:, ::1] mv = <long[:N, :M]>arr

We use the memoryview casting syntax, <long[:N, :M]>, to provide Cython with the
information it needs to assign arr to our memoryview. Notice that the type in the cast
uses slice notation with stop values for each dimension. The stop values are necessary
to communicate to Cython the shape we intend the typed memoryview to have.

At the C level, there is no way to programmatically determine the
length of a dynamically allocated C array via its head pointer. It is
the responsibility of the programmer to know the right extent of the
C array when casting a C array to a typed memoryview. If this is
incorrect, buffer overruns, segmentation faults, or data corruption
may result.

This rounds out the features of typed memoryviews and shows how they can be used
with either buffer-supporting Python objects or C-level arrays, whether fixed size or
dynamic. If a Cython function has a typed memoryview argument, it can be called with
either Python objects or C arrays as arguments.

188 | Chapter 10: Cython, NumPy, and Typed Memoryviews

When returning a typed memoryview in a def function, Cython converts it to a regular
Python memoryview without copying the buffer. In the preceding dynamic function,
returning mv will work: the underlying arr C array is heap allocated, so it is not tied to
the function’s scope. If arr were fixed size (and therefore stack allocated), then it would
be tied to the call stack, and returning a memoryview that viewed the array would be
erroneous.

But there is still an issue with memoryviews that view heap-allocated C arrays: who is
responsible for freeing the array when the memoryview is no longer needed? A related
question: when a C or C++ library returns a dynamically allocated array, how can we
return it as a NumPy array, and how can we properly manage its finalization?

Wrapping C and C++ Arrays
Suppose a C function make_matrix_c returns a dynamically allocated C array. Its dec‐
laration in Cython would be something like:

cdef extern from "matrix.h":
 float *make_matrix_c(int nrows, int ncols)

Suppose also that we want to return a NumPy array that views this array, allowing
interaction with the underlying data from Python. Using what we know of typed mem‐
oryviews—and setting aside proper cleanup for the moment—we can use memoryviews
to easily do what we want:

import numpy as np

def make_matrix(int nrows, int ncols):
 cdef float[:, ::1] mv = <float[:nrows, :ncols]>make_matrix_c(nrows, ncols)
 return np.asarray(mv)

This compiles and allows NumPy access to the C array, but it leaks memory. How do
we properly clean up after ourselves?

Correct (and Automatic) Memory Management with Cython and C
Arrays
First, we know (by construction) that we are responsible for this memory. If there is a
possibility that we are sharing this array with other C code, then properly handling the
shared array can become tricky. The difficult part is communicating to all interested
parties who is responsible for cleanup. Because C has no automatic memory manage‐
ment features (like C++ shared pointers, for example), ensuring proper cleanup can be
challenging. Often the cleanest solution in these situations is to make a copy of the data
to clarify ownership semantics.

Knowing that we own this C array and are responsible for freeing it, how do we do so
properly from Python? The C array is owned by a NumPy array. What we need is a way

Wrapping C and C++ Arrays | 189

to automatically call the right destructor when the last viewing NumPy array is finalized
by the Python runtime.

The NumPy/C API defines a base attribute on the PyArrayObject, which is designed
for just this purpose. According to NumPy’s documentation, “If you are constructing
an array using the C API, and specifying your own memory, you should use the function
PyArray_SetBaseObject to set the base to an object which owns the memory.” We will
use a Cython-provided function rather than PyArray_SetBaseObject to accomplish
the same end.

First, we need access to NumPy’s C API. We can cimport numpy (mind the c) to access
NumPy’s C interface. Let’s give it an alias to keep it distinct from the Python-level numpy
package we already imported:

import numpy as np
cimport numpy as cnp

We know from Chapter 6 that the cimport numpy as cnp statement is a compile-time
operation that gives us access to C-level constructs. Cython includes a numpy package
alongside the libc and libcpp packages that are used by cimport.

We need to set the base to “an object which owns the memory.” We can create a minimal
extension type that does just that. It needs just one attribute to hold a reference to the
array, and just one method, __dealloc__. This is the object that owns the memory, and
its sole purpose is to call free on the array at finalization. Let’s call it _finalizer:

cdef class _finalizer:
 cdef void *_data
 def __dealloc__(self):
 print "_finalizer.__dealloc__"
 if self._data is not NULL:
 free(self._data)

With our _finalizer class, we have everything we need to properly manage memory.
The print statement is there just to ensure the array is deallocated appropriately. We
can now create a convenience cdef function that creates a _finalizer and uses the
set_array_base function from Cython’s numpy C interface:

cdef void set_base(cnp.ndarray arr, void *carr):
 cdef _finalizer f = _finalizer()
 f._data = <void*>carr
 cnp.set_array_base(arr, f)

This function first creates an empty _finalizer object, then initializes its _data at‐
tribute, and lastly calls set_array_base.

Returning to our make_matrix function, we can use set_base to tie everything together:

def make_matrix(int nrows, int ncols):
 cdef float *mat = make_matrix_c(nrows, ncols)

190 | Chapter 10: Cython, NumPy, and Typed Memoryviews

http://docs.scipy.org/doc/numpy/reference/c-api.array.html#PyArray_BASE

 cdef float[:, ::1] mv = <float[:nrows, :ncols]>mat
 cdef cnp.ndarray arr = np.asarray(mv)
 set_base(arr, mat)
 return arr

The first line of our function calls make_matrix_c and stores the result in a float pointer.
The next line creates a C-contiguous typed memoryview from the mat array.

The next line creates a NumPy array from our typed memoryview; this uses the buffer
protocol behind the scenes to share the underlying C array. Then we use our set_base
helper function to set the base attribute of our NumPy array to a _finalizer object.
This ties everything together properly, and we can return our NumPy array as a result.

If we name our extension module numpy_cleanup.pyx, we can compile it using a
distutils script:

from distutils.core import setup, Extension
from Cython.Build import cythonize
from numpy import get_include

ext = Extension("numpy_cleanup", ["numpy_cleanup.pyx"],
 include_dirs=['.', get_include()])

setup(name="numpy_cleanup",
 ext_modules = cythonize(ext))

Because we use the NumPy/C API (via the cimport numpy as cnp statement), we need
to include some NumPy headers when compiling. That is the reason for the
include_dirs option to the Extension call. NumPy provides a get_include function
that returns the full path to its include directory.

After compiling:

$ python setup.py build_ext -i
running build_ext
building 'numpy_cleanup' extension
gcc -fno-strict-aliasing -fno-common -dynamic -g -O2
 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I.
 -I/Users/ksmith/PY/lib/python2.7/site-packages/numpy/core/include
 -I/Users/ksmith/Devel/PY64/Python.framework/Versions/2.7/include/python2.7
 -c numpy_cleanup.c -o build/temp.macosx-10.4-x86_64-2.7/numpy_cleanup.o
gcc -bundle -undefined dynamic_lookup
 build/temp.macosx-10.4-x86_64-2.7/numpy_cleanup.o
 -o /Users/ksmith/examples/memviews/numpy_cleanup.so

We can try out our make_matrix from IPython:

$ ipython --no-banner

In [1]: import numpy_cleanup

In [2]: arr = numpy_cleanup.make_matrix(100, 100)

Wrapping C and C++ Arrays | 191

Let’s check the base attribute:

In [3]: arr.base
Out[3]: <numpy_cleanup._finalizer at 0x100284eb8>

What we’re interested in is that the finalizer’s __dealloc__ method is called at cleanup
time. We can force IPython to wipe out any references to the arr NumPy array with
%reset:

In [4]: %reset
Once deleted, variables cannot be recovered. Proceed (y/[n])? y
_finalizer.__dealloc__

We have the satisfaction of seeing the "_finalizer.__dealloc__" string output, indi‐
cating the array was, indeed, freed. It is left as an exercise for the reader to confirm that
the finalizer’s __dealloc__ is called even when there are multiple views of the array.

There is a lot going on here. Interlanguage programming can require more effort to
properly manage memory and resources, but Cython has the features and functionality
to make it straightforward. The fact that we can do these low-level operations at the
Cython level and do not have to resort to pure-C code saves us a tremendous amount
of work. This is another instance of Cython making difficult things possible.

It is worth emphasizing that the most common use case is to use NumPy arrays to
manage data, and to use the basic features of typed memoryviews to efficiently access
and modify these NumPy arrays from Cython.

Summary
In this chapter we learned all about Cython’s features for working with NumPy arrays,
array.array objects, and objects that support the new buffer protocol. The central
figure was Cython’s typed memoryview, which provides a consistent abstraction that
works with all of these Python types and gives us efficient C-level access to buffer ele‐
ments. Typed memoryviews both use and support the buffer protocol, so they do not
copy memory unnecessarily. They are highly efficient: we saw a simple example where
using typed memoryviews provided a speedup of multiple orders of magnitude over
pure Python.

We also learned how typed memoryviews can easily work with C and C++ arrays, either
fixed size or dynamic. To pull everything together, we saw an example that uses a typed
memoryview and a NumPy array to view a dynamically allocated C array. This required
that we dip into the NumPy/C API to ensure that the dynamic memory is properly
finalized at the appropriate time.

192 | Chapter 10: Cython, NumPy, and Typed Memoryviews

CHAPTER 11

Cython in Practice: Spectral Norm

The competent programmer is fully aware of the strictly limited
size of his own skull; therefore he approaches the programming task in

full humility, and among other things he avoids clever tricks like the plague.
— E. Dijkstra

Like Chapter 4, this chapter’s intent is to reiterate concepts and techniques to show
Cython’s use in context. Here we focus on using typed memoryviews to compute the
spectral norm of a particular matrix. This is another example from the computer lan‐
guage benchmarks game, allowing us to compare the Cython solution’s performance to
other highly optimized implementations in different languages. The focus here is how
to use typed memoryviews to achieve much better performance with array-heavy op‐
erations. That said, we will first cover what the spectral norm is and explore a pure-
Python version before using Cython to speed it up.

Overview of the Spectral Norm Python Code
The spectral norm of a matrix A is defined to be the largest singular value of A; that is,
the square root of the largest eigenvalue of the matrix B = A T A, where A T is the con‐
jugate transpose of A. The spectral norm of a matrix is an important quantity that
frequently arises, and it is often computed in computational linear algebra contexts.

To compute the spectral norm, we make use of one observation about B: if the vector
u is parallel to the principal eigenvector of B, then the quantity u T Bu / u T u is identical
to the spectral norm of A. Therefore, if we compute B nu for positive integer n and
random (nonzero) vector u, each application of B will align u more closely with the
principal eigenvector. This provides an iterative solution to compute the spectral norm,
and at its core it uses a matrix-vector multiply.

193

http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

The particular matrix for which we will compute the spectral norm is defined as:

(1 / 1 1 / 2 1 / 4 1 / 7 ⋯

1 / 3 1 / 5 1 / 8
1 / 6 1 / 9
1 / 10 ⋱

⋮
)

Given row i and column j—both zero-based—we can compute Ai , j in a single
expression:1

def A(i, j):
 return 1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1)

Alternatively, we could compute Ai , j up to a given maximum number of rows and col‐
umns and store the result in a two-dimensional array. Because the matrix is dense, the
memory required to store it grows very quickly. For more direct comparison with the
other language implementations, we will use the computed version defined in the pre‐
ceding code block.

The core of the program computes v = Au or v = A T u:

def A_times_u(u, v):
 u_len = len(u)

 for i in range(u_len):
 partial_sum = 0.0
 for j in range(u_len):
 partial_sum += A(i, j) * u[j]

 v[i] = partial_sum

The definition of At_times_u is identical except for the partial_sum update:

def At_times_u(u, v):
 # ...
 for ...:
 for ...:
 partial_sum += A(j, i) * u[j]
 # ...

To compute A T Au = Bu, we can first compute v = Au using A_times_u and then com‐
pute A T v using At_times_u. That is what B_times_u does:

194 | Chapter 11: Cython in Practice: Spectral Norm

https://github.com/cythonbook/examples

def B_times_u(u, out, tmp):
 A_times_u(u, tmp)
 At_times_u(tmp, out)

Because A is an infinite matrix, some approximation must be used. The spectral norm
program takes an integer n from the command line that determines the number of rows
and columns in A. It then creates an input vector u of length n initialized to 1, using the
standard library array type:

def spectral_norm(n):
 u = array("d", [1.0] * n)
 v = array("d", [0.0] * n)
 tmp = array("d", [0.0] * n)

Here, u is the input vector; v and tmp are intermediates.

The core of the program calls B_times_u a net 20 times, all while managing the tem‐
poraries to handle swapping values:

def spectral_norm(n):
 # ...
 for _ in range(10):
 B_times_u(u, v, tmp)
 B_times_u(v, u, tmp)

After this loop is finished, the vectors u and v are both closely aligned with the principal
eigenvector of B. The vector u has had one more application of B than v, so to compute
the spectral norm of A, we compute v T u / v T v, which is equivalent to v T Bv / v T v:

def spectral_norm(n):
 # ...
 vBv = vv = 0

 for ue, ve in zip(u, v):
 vBv += ue * ve
 vv += ve * ve

The spectral norm is then a simple expression, which we return:

def spectral_norm(n):
 # ...
 return sqrt(vBv / vv)

Altogether, the entire script is about 70 lines of code. The pure-Python version is
(subjectively) one of the easier implementations to understand among all submitted
versions, but it is also consistently orders of magnitude slower than many other imple‐
mentations. Cython is ideally suited to allow the Python version to keep its expressive‐
ness and improve its performance to be competitive.

Overview of the Spectral Norm Python Code | 195

Performance Profiling
Our pure-Python version is in a source file named spectral_norm.py. If run as a script
from the command line, it will pass the input argument to spectral_norm and print
the result:

if __name__ == "__main__":
 n = int(sys.argv[1])
 spec_norm = spectral_norm(n)
 print("%0.9f" % spec_norm)

Let’s try it out for small inputs:

$ python ./spectral_norm.py 10
1.271844019

$ python ./spectral_norm.py 50
1.274193837

$ python ./spectral_norm.py 100
1.274219991

$ python ./spectral_norm.py 200
1.274223601

The true solution to 10 significant digits is 1.274224152, so as n increases, we see that
the accuracy of the computed spectral norm improves as well.

Let’s run spectral_norm.py under a profiler (see Chapter 9) to see what occupies the
runtime:

$ ipython --no-banner

In [1]: %run -p ./spectral_norm.py 300

 3600154 function calls in 3.836 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 3600000 1.826 0.000 1.826 0.000 spectral_norm.py:15(A)
 20 1.013 0.051 1.934 0.097 spectral_norm.py:18(A_times_u)
 20 0.995 0.050 1.900 0.095 spectral_norm.py:32(At_times_u)
 1 0.000 0.000 3.835 3.835 spectral_norm.py:50(spectral_norm)
 ...

The column to focus on is tottime, which indicates the time spent in this function
excluding time spent in called functions. Looking at the first three rows in the tottime
column, we can conclude that the three functions A, A_times_u, and At_times_u to‐
gether consume greater than 95 percent of the total runtime.

196 | Chapter 11: Cython in Practice: Spectral Norm

http://bit.ly/challenge_problems

Cythonizing Our Code
With profiling data in hand, we can sketch out how we will use Cython to improve
performance.

Before starting, first we rename spectral_norm.py to spectral_norm.pyx; this is the source
of our Cython-generated extension module. We also create a minimal
run_spec_norm.py driver script:

import sys
from spectral_norm import spectral_norm

print("%0.9f" % spectral_norm(int(sys.argv[1])))

We modify spectral_norm.pyx to work with this driver script, removing the if
__name__ ... block.

We also need a setup.py script to compile spectral_norm.pyx:

from distutils.core import setup
from Cython.Build import cythonize

setup(name='spectral_norm',
 ext_modules = cythonize('spectral_norm.pyx'))

Let’s compile and run our Cythonized version before doing anything else, to see what
Cython can do unaided:

$ python setup.py build_ext -i
Compiling spectral_norm.pyx because it changed.
Cythonizing spectral_norm.pyx
running build_ext
building 'spectral_norm' extension
creating build
creating build/temp.macosx-10.4-x86_64-2.7
gcc -fno-strict-aliasing -fno-common -dynamic -g -O2
 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
 -I[...] -c spectral_norm.c -o [...]/spectral_norm.o
gcc -bundle -undefined dynamic_lookup
 [...]/spectral_norm.o -o [...]/spectral_norm.so

Again, this output is specific for OS X. Consult Chapter 2 for platform-specific options
to pass when compiling using distutils.

Now that all the infrastructure is in place, running our program is straightforward.

First, let’s see the runtime of our pure-Python version for comparison:

$ time python spectral_norm.py 300
1.274223986
python spectral_norm.py 300 3.14s user 0.01s system 99% cpu 3.152 total

The Cythonized version’s performance may be surprising:

Cythonizing Our Code | 197

$ time python run_spec_norm.py 300
1.274223986
python run_spec_norm.py 300 1.10s user 0.01s system 99% cpu 1.111 total

Remarkably, for this spectral norm calculation Cython is able to improve performance
by nearly a factor of three, with no modifications to the core algorithm. This is a great
start, and using more Cython features will only improve performance.

Adding Static Type Information
The A(i, j) function is called millions of times, so improving its performance will yield
a significant payoff. It takes integer arguments and computes a floating-point value in
a single expression, so converting it to use static typing is straightforward. By converting
it to a cdef inline function, we remove all Python overhead:

cdef inline double A(int i, int j):
 return 1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1)

Using Cython’s annotation support (see Chapter 9; output not shown here), we see that
the body of A is still yellow. This is due to the division operation, which by default will
raise a ZeroDivisionError if the denominator is zero. We already know that it is im‐
possible for the denominator to be zero, so this check is unnecessary. Cython allows us
to trade safety for performance by using the cdivision decorator to turn off the test for
a zero denominator:

from cython cimport cdivison

@cdivison(True)
cdef inline double A(...):
 # ...

After compiling again, we see that our optimized A function leads to another factor-of-
two performance improvement:

$ time python run_spec_norm.py 300
1.274223986
python run_spec_norm.py 300 0.51s user 0.01s system 99% cpu 0.520 total

But we can do even better—let’s look at the matrix-vector multiplication functions.

Using Typed Memoryviews
The A_times_u and At_times_u functions work extensively with arrays inside nested
for loops. This pattern is ideally suited to the use of typed memoryviews, covered in
Chapter 10.

First we convert the untyped arguments of A_times_u to use one-dimensional contig‐
uous typed memoryviews of dtype double:

198 | Chapter 11: Cython in Practice: Spectral Norm

def A_times_u(double[::1] u, double[::1] v):
 # ...

We then provide static typing information for all internal variables:

def A_times_u(double[::1] u, double[::1] v):
 cdef int i, j, u_len = len(u)
 cdef double partial_sum
 # ...

The body of A_times_u remains unmodified:

def A_times_u(double[::1] u, double[::1] v):
 # ...
 for i in range(u_len):
 partial_sum = 0.0
 for j in range(u_len):
 partial_sum += A(i, j) * u[j]
 v[i] = partial_sum

We make sure to provide static typing for all variables in the code body. Ensuring that
u and v are contiguous typed memoryviews allows Cython to generate efficient indexing
code for the innermost loop.

The At_times_u transformation is identical.

We leave both the B_times_u and spectral_norm functions unmodified. If you recall
from our profiling run, the A, A_times_u, and At_times_u functions occupy more than
95 percent of the runtime. Modifying these functions to use Cython data structures and
static types makes sense, but using Cython-specific features everywhere is not necessary
and is an exercise in diminishing returns.

Because we use typed memoryviews for the u and v arguments, we can call the A_times_u
and At_times_u functions with any Python object that supports the buffer protocol. So,
whenever B_times_u calls A_times_u and At_times_u, the u and v typed memoryviews
will acquire the underlying buffer from the provided array.array objects. They do so
without copying data.

In Python 2, there is one more step to ensure array.array objects work with typed
memoryviews. Near the top of the file, we add another compile-time import:

from cpython.array cimport array

After compiling with our Cythonized matrix-vector multiplication routines in place,
we see that the runtime is now significantly faster than before:

$ time python run_spec_norm.py 300
1.274223986
python run_spec_norm.py 300 0.05s user 0.01s system 97% cpu 0.058 total

Using typed memoryviews and statically typing all inner variables in A_times_u and
At_times_u has led to an additional factor-of-10 performance improvement.

Cythonizing Our Code | 199

As we saw in Chapter 10, we can generate slightly more efficient code inside A_times_u
and At_times_u by turning off bounds checking and wraparound index checking:

from cython cimport boundscheck, wraparound

@boundscheck(False)
@wraparound(False)
cdef void A_times_u(...):
 # ...

Perhaps unexpectedly, these optimizations do not affect performance by any measurable
margin.

Comparing to the C Implementation
We are using the same algorithm here as is used in all the other solutions to the computer
benchmark game, which allows us to compare Cython’s performance to C directly.

All C versions of the benchmark—including the serial version we compare to here—
are freely available. We can compile and run the C version with an n of 5500, making
sure to use the same optimization flags that we used for Python to ensure a fair
comparison:

$ time ./spectralnorm.x 5500
1.274224153
./spectralnorm.x 5500 9.60s user 0.00s system 99% cpu 9.601 total

Our Cython version with n of 5500 run has identical output and identical performance
(within measurement error):

$ time python run_spec_norm.py 5500
1.274224153
python run_spec_norm.py 5500 9.61s user 0.01s system 99% cpu 9.621 total

The fastest C implementation makes use of SIMD intrinsics to parallelize the core com‐
putation. There is nothing preventing us from accessing the same operations from our
Cython code as well. Doing so requires that we declare the platform-specific SIMD-
enabled functions to Cython and integrate them into the spectral_norm.pyx code.

Summary
This second Cython in Practice chapter reiterates concepts and techniques covered in
Chapter 3 (static scalar types), Chapter 9 (profiling), and Chapter 10 (typed memory‐
views). With it, we see how to speed up a nontrivial linear algebra computation to achieve
C-level performance. Remarkably, Cython provides a factor-of-three performance im‐
provement with no core modifications for this example. Using static typing and typed
memoryviews, we are able to improve performance by an overall factor of 60, matching
the runtime of a highly optimized serial-C implementation.

200 | Chapter 11: Cython in Practice: Spectral Norm

CHAPTER 12

Parallel Programming with Cython

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?” I am not able rightly

to apprehend the kind of confusion of ideas that could provoke such a question.
— C. Babbage

In previous chapters, we have seen several instances of Cython improving Python’s
performance by factors of 10, 100, or even 1,000. These performance improvements
often accrue after minor—sometimes trivial—modifications to the initial Python ver‐
sion. For array-oriented algorithms, in Chapter 10 we learned about Cython’s typed
memoryviews and how they allow us to work efficiently with arrays. In particular, we
can loop over typed memoryviews and obtain code that is competitive with C for loops
over C arrays.

All of these impressive performance improvements were achieved on a single thread of
execution. In this chapter we will learn about Cython’s multithreading features to access
thread-based parallelism. Our focus will be on the prange Cython function, which al‐
lows us to easily transform serial for loops to use multiple threads and tap into all
available CPU cores. Often we can turn on this thread-based loop parallelism with fairly
trivial modifications. We will see that for embarrassingly parallel CPU-bound opera‐
tions, prange can work well.

Before we can cover prange, we must first understand certain interactions between the
Python runtime and native threads, which involves CPython’s global interpreter lock.

Thread-Based Parallelism and the Global Interpreter Lock
A term that frequently comes up in discussions of CPython’s thread-based parallelism
is the global interpreter lock, or GIL. According to Python’s documentation, the GIL is

201

https://wiki.python.org/moin/GlobalInterpreterLock

1. To follow along with the examples in this chapter, please see https://github.com/cythonbook/examples.

“a mutex that prevents multiple native threads from executing Python bytecodes at
once.” In other words, the GIL ensures that only one native (or OS-level) thread executes
Python bytecodes at any given time during the execution of a CPython program. The
GIL affects not just Python-level code, but the Python/C API as a whole.

Why is it in place? “This lock is necessary mainly because CPython’s memory manage‐
ment is not thread-safe. (However, since the GIL exists, other features have grown to
depend on the guarantees that it enforces.)”

Some points to emphasize:

• The GIL is necessary to help with the memory management of Python objects.
• C code that does not work with Python objects can be run without the GIL in effect,

allowing fully threaded execution.
• The GIL is specific to CPython. Other Python implementations, like Jython, Iron‐

Python, and PyPy, have no need for a GIL.

Because Cython code is compiled, not interpreted, it is not running Python bytecode.
Because we can create C-only entities in Cython that are not tied to any Python object,
we can release the global interpreter lock when working with the C-only parts of Cython.
Put another way, we can use Cython to bypass the GIL and achieve thread-based
parallelism.

Before running parallel code with Cython, we first need to manage the GIL. Cython
provides two mechanisms for doing so: the nogil function attribute and the with nogil
context manager.

The nogil Function Attribute
We can indicate to Cython that a C-level function should be called with the GIL re‐
leased. By necessity, such functions are from an external library or are declared cdef or
cpdef. A def function cannot be called with the GIL released, as these functions always
interact with Python objects.

To call a function in a GIL-less context, the function must have the nogil attribute,
which we declare in the function’s signature:1

cdef int kernel(double complex z, double z_max, int n_max) nogil:
 # ...

The nogil attribute is placed after the closing parenthesis of the argument list and before
the colon. Inside the body of kernel we must not create or otherwise interact with
Python objects, including statically typed Python objects like lists or dicts. At compile

202 | Chapter 12: Parallel Programming with Cython

https://github.com/cythonbook/examples

time Cython does what it can to ensure that a nogil function does not accept, return,
or otherwise interact with Python objects in the function body. It does a reasonably
good job of this in practice, but the cython compiler does not guarantee that it can catch
every case, so vigilance is necessary. For instance, we can smuggle a Python object into
a nogil function by casting the object to a void pointer type.

We can declare external C and C++ functions to be nogil as well:

cdef extern from "math.h":
 double sin(double x) nogil
 double cos(double x) nogil
 double tan(double x) nogil
 # ...

Frequently, an external library does not interact with Python objects at all. In such cases,
we can declare every function in an extern block as nogil by placing the nogil decla‐
ration in the cdef extern from line:

cdef extern from "math.h" nogil:
 double sin(double x)
 double cos(double x)
 double tan(double x)
 # ...

The nogil attribute simply allows the so-attributed function(s) to be called without the
GIL in effect. It is still up to us to release the GIL before calling it, and for that, we use
the with nogil context manager.

The with nogil Context Manager
To release and acquire the GIL, Cython must generate the appropriate Python/C API
calls. Once the GIL has been released, it must be reacquired before interacting with
Python objects, which naturally suggests a context manager (i.e., a with statement):

...declare and initialize C arguments...

with nogil: # run without the GIL in place
 result = kernel(z, z_max, n_max)

GIL reacquired
print result

In this code snippet, we use the with nogil context manager to release the GIL before
calling kernel and reacquire it after the context manager block is exited. The argument
types and return type for kernel are C data types, by necessity. If we try to use Python
objects in the with nogil block, Cython issues a compile-time error. For example, if
we placed the print statement in the preceding example inside the context manager the
cython compiler would complain, as the print statement coerces its argument to a
PyObject.

Thread-Based Parallelism and the Global Interpreter Lock | 203

One use of the with nogil context manager is to release the GIL during blocking op‐
erations (either CPU or IO bound), thereby allowing other Python threads to execute
while a possibly expensive operation runs concurrently.

Suppose the kernel function had an except 0 clause in addition to the nogil clause.
In this case, Cython would generate the proper error handling code in the nogil context
manager, and any errors would be propagated after the GIL was reacquired.

It is possible to acquire the GIL temporarily within a with nogil context by using a
with gil subcontext. This allows, for example, a nogil function to acquire the GIL to
raise an exception or to do some other operation involving Python objects.

Understanding what the GIL is and how to manage it is necessary, but not sufficient, to
allow threaded parallelism with Cython. It is still up to us to actually run code that uses
threads with the GIL released.

The easiest way to access thread-based parallelism is to use an external library that
already implements it for us. When calling such thread-parallel functions, we simply
do so inside a with nogil context to benefit from their performance.

But the jewel of this chapter is prange, and all this GIL work is necessary before we can
use it.

Cython and OpenMP
Cython implements prange using the OpenMP API for multiplatform shared memory
multiprocessing. OpenMP requires C or C++ compiler support, and is enabled by spe‐
cific compiler flags. For instance, when using GCC, we must pass the -fopenmp flag
when compiling and linking our binary to ensure OpenMP is enabled. OpenMP is
supported widely by many compilers, both free and commercial. The most notable
exception is Clang/LLVM, which has preliminary support in a separate fork. Work is
ongoing to fully implement OpenMP for Clang and include it in the main release.

Using prange to Parallelize Loops
The prange special function is a Cython-only construct. Its name is meant to evoke a
parallel range, although unlike the built-in range, prange can be used only in conjunc‐
tion with a for loop. It cannot be used in isolation.

To access prange, we simply cimport it from cython.parallel:

from cython.parallel cimport prange

Let’s see an example.

204 | Chapter 12: Parallel Programming with Cython

The Drosophila melanogaster of parallel programming examples is computing either
the Mandelbrot set or its cousins, Julia sets. It is an embarrassingly parallel CPU-bound
computation, ideal for speeding up with threads. Almost all compute time is spent
executing a kernel function we call escape:

cdef int escape(double complex z,
 double complex c,
 double z_max,
 int n_max) nogil:
 cdef:
 int i = 0
 double z_max2 = z_max * z_max
 while norm2(z) < z_max2 and i < n_max:
 z = z * z + c
 i += 1
 return i

The details of escape are not central to this example; it is sufficient to know that this
function determines the number of iterations required before a complex value’s norm
grows larger than a specified bound.

This function calls norm2, which is the square of the absolute value of its complex ar‐
gument z:

cdef inline double norm2(double complex z) nogil:
 return z.real * z.real + z.imag * z.imag

Both escape and norm2 are declared nogil in anticipation of being run in parallel.

The escape function has an extra parameter, n_max, which limits the maximum number
of iterations in our while loop. Without it, a point in a Julia set would cause the while
loop to iterate forever, as these points never escape.

We call escape with fixed c, z_max, and n_max values on every point in the complex
plane bounded by the four points ±1.5 ± 1.5i. We can specify the resolution to control
the number of complex points in this domain.

The complex value c parameterizes a Julia set and completely determines its charac‐
teristics. Varying c yields dramatically different Julia sets. A fun fact: if c is a point inside
the Mandelbrot set, then its corresponding Julia set is connected and dense. If c is outside
the Mandelbrot set, the corresponding Julia set is disconnected and nowhere dense. If
c is at the boundary of the Mandelbrot set, the corresponding Julia set is fractal-like.

Let’s define a function named calc_julia that takes a resolution, a c parameter, and
some optional arguments that we pass through to the escape function:

def calc_julia(int resolution, double complex c,
 double bound=1.5, double z_max=4.0, int n_max=1000):
 # ...

Using prange to Parallelize Loops | 205

First, we need to declare internal variables and the output array, named counts:

def calc_julia(...):
 cdef:
 double step = 2.0 * bound / resolution
 int i, j
 double complex z
 double real, imag
 int[:, ::1] counts
 counts = np.zeros((resolution+1, resolution+1), dtype=np.int32)
 # ...

Because we touch every point in the two-dimensional domain, nested for loops work
well:

def calc_julia(...):
 # ...
 for i in range(resolution + 1):
 real = -bound + i * step
 for j in range(resolution + 1):
 imag = -bound + j * step
 z = real + imag * 1j
 counts[i,j] = escape(z, c, z_max, n_max)

 return np.asarray(counts)

Each loop iterates through the values 0 through resolution. We use the loop indexing
variables i and j to compute the real and imaginary parts of the z argument to
escape. The real work of the loop takes place inside our escape function, and we assign
its result to counts[i,j].

As we learned in Chapter 10, when looping through an array in this fashion, we can tell
Cython to disable both bounds checking and wraparound checking when assigning to
counts[i,j]:

from cython cimport boundscheck, wraparound

@boundscheck(False)
@wraparound(False)
def calc_julia(...):
 # ...

To compile our extension module (named julia.pyx), we use a distutils script named
setup_julia.py:

from distutils.core import setup
from Cython.Build import cythonize

setup(name="julia",
 ext_modules=cythonize("julia.pyx"))

Let’s create a test script to call calc_julia for an interesting value of c:

206 | Chapter 12: Parallel Programming with Cython

import julia

jl = julia.calc_julia(1000, (0.322 + 0.05j))

We can use matplotlib to plot our Julia set:

import numpy as np
import matplotlib.pyplot as plt

plt.imshow(np.log(jl))
plt.show()

Here we compute the logarithm of our Julia set to make the levels more easily distin‐
guishable. We then pass the result to imshow, as shown in Figure 12-1.

Figure 12-1. Julia set used for parallel computation

Performance-wise, it takes about 1.4 seconds to compute this Julia set on a domain with
a resolution of 1,000 × 1,000 points.

Using prange to Parallelize Loops | 207

Using prange
Upon inspection, it is clear that the escape computation does not depend on any pre‐
vious loop iteration. This makes our loop an ideal candidate for parallelization, because
each loop iteration is independent of all others.

As mentioned earlier, we first need to cimport prange from cython.parallel:

from cython.parallel cimport prange

Using prange is simple, provided we have already taken the necessary steps to ensure
no Python objects are used inside the loop body. First we place the loop inside a
with nogil block, and convert our outer loop’s range call to prange:

def calc_julia(...):
 # ...
 with nogil:
 for i in prange(resolution + 1):
 real = -bound + i * step
 for j in range(resolution + 1):
 # ...
 # ...

This pattern is so common that prange has a nogil keyword argument that is equivalent
to the preceding example:

def calc_julia(...):
 # ...
 for i in prange(resolution + 1, nogil=True):
 real = -bound + i * step
 for j in range(resolution + 1):
 # ...

Once we use prange, we must ensure that we compile with OpenMP enabled. The
standard compilation and linking flag to give compilers like gcc is -fopenmp. We can
add a compiler directive comment at the top of julia.pyx:

distutils: extra_compile_args = -fopenmp
distutils: extra_link_args = -fopenmp

When rerunning the distutils script from the command line, ensure that the -fopenmp
flag is included in the compilation and linking commands:

$ python setup_julia.py build_ext -i
Compiling julia.pyx because it changed.
Cythonizing julia.pyx
running build_ext
building 'julia' extension
gcc -fno-strict-aliasing -fno-common -dynamic -g -O2
 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
 -I[...] -c julia.c -o [...]/julia.o -fopenmp
gcc -bundle -undefined dynamic_lookup
 [...]/julia.o -o [...]/julia.so -fopenmp

208 | Chapter 12: Parallel Programming with Cython

After taking these steps, we can run our test script as before, but this time the compiler
enables threads when running the nested for loops, using all CPUs on our system to
speed up execution. When we use this version of calc_julia and enable OpenMP, the
runtime on an eight-core system improves to about 0.47 seconds, or a factor of three
faster than the serial version. Not bad for a small amount of setup and an entirely trivial
change to the source code. But we can do better: there are reasons why we are not
utilizing more of the parallelism at our disposal.

prange Options
When prange is used with default parameters, it divides the loop range into equal-sized
contiguous chunks, giving one chunk to each available thread. This strategy is bad for
computing a Julia set: all points in red in Figure 12-1 (the fractal-like shape at the center
for anyone reading in black and white) are in the set and maximize the number of loop
iterations inside escape. The blue points (the outer area surrounding the fractal shape)
are not in the set and require many fewer iterations. The unlucky threads assigned to
the middle region get a chunk of the complex plane that contains many Julia set points,
so these threads do the bulk of the work. What we want is to partition the work more
evenly, or, in prange (and OpenMP) parlance, use a different chunksize, and possibly
a different schedule.

Let’s try using a static schedule with prange and give it a chunksize of 1. This assigns
rows of the counts array to threads in a round-robin, or cyclic, fashion:

def calc_julia(...):
 # ...
 for i in prange(resolution + 1, nogil=True,
 schedule='static', chunksize=1):
 # ...

With this modification, our runtime decreases to 0.26 seconds, about 5.5 times faster
than the range-only version. Again, a nice payoff for a trivial change.

As indicated in the following list, there are other schedules besides static. Their be‐
haviors allow control over different aspects of the threaded computation. The
options are:
static

Iterations are assigned to threads in a fixed way at compile time. If chunksize is not
given, the iterations are distributed in num_threads contiguous blocks, one block
per thread. If chunksize is given, each chunk is assigned to threads in a round-
robin fashion. This is best when the work is evenly distributed and generally known
ahead of time.

Using prange to Parallelize Loops | 209

dynamic

Threads ask the scheduler for the next chunk dynamically at runtime. The
chunksize defaults to 1. A dynamic schedule is best when the workload is unevenly
distributed and unknown ahead of time.

guided

Chunks are distributed dynamically, like with dynamic. Unlike with dynamic, the
chunksize is not fixed but rather is proportional to the remaining iterations divided
by the number of threads.

runtime

The schedule and chunksize are determined by either the
openmp.openmp_set_schedule function or the OMP_SCHEDULE environment vari‐
able at runtime. This allows exploration of different schedules and chunksizes
without recompiling, but may have poorer performance overall as no compile-time
optimizations are possible.

Controlling the schedule and chunksize allows easy exploration of
different parallel execution strategies and workload assignments.
Typically static with a tuned chunksize is a good first approach;
dynamic and guided incur runtime overhead and are appropriate in
dynamically changing execution contexts. The runtime schedule pro‐
vides maximum flexibility among all other schedule types.

We can use prange with start, stop, and step arguments, like range. In addition to
the nogil, schedule, and chunksize optional arguments, prange also accepts a
num_threads argument to control the number of threads to use during execution. If
num_threads is not provided, prange uses as many threads as there are CPU cores
available.

A performance boost of 5.5 for minor modifications to our Cython code is a nice result.
This performance boost is multiplicative with the performance enhancements Cython
already provides over pure Python.

Using prange for Reductions
Often we want to loop over an array and compute a scalar sum or product of values.
For instance, suppose we want to compute the area fraction of our complex domain that
is inside a Julia set. We can approximate this fraction by summing the number of points
in the counts array that equal n_max and dividing by the total number of points. This
gives us an opportunity to see how prange can speed up reduction operations, too.

210 | Chapter 12: Parallel Programming with Cython

Let’s call our function julia_fraction. It takes a typed memoryview for the counts
array and a maxval argument, by default equal to n_max:

@boundscheck(False)
@wraparound(False)
def julia_fraction(int[:,::1] counts, int maxval=1000):
 # ...

Our julia_fraction function needs to count up the number of n_max elements of our
set, which we store in the total variable. We need the usual loop indexing variables
as well:

def julia_fraction(...):
 cdef:
 int total = 0
 int i, j, N, M
 N = counts.shape[0]; M = counts.shape[1]
 # ...

The core of our computation is, again, nested for loops. Once we compute the cardin‐
ality, we return it divided by the size of the counts array:

def julia_fraction(...):
 # ...
 for i in range(N):
 for j in range(M):
 if counts[i,j] == maxval:
 total += 1
 return total / float(counts.size)

When running this serial version of julia_fraction for a Julia set with c = 0.322 +
0.05j, we get an area fraction of about 0.24. Because we normalize by the total number
of points in the complex domain, this fraction is independent of resolution. For a com‐
plex plane with a resolution of 4,000 × 4,000 points, it requires about 14 milliseconds
to run.

Let’s substitute prange for range in the outer loop:

def julia_fraction(...):
 # ...
 for i in prange(N, nogil=True):
 # ...
 return total / float(counts.size)

With this trivial modification, runtime decreases to about 4 ms, an improvement of
about a factor of 3.5. We can play with the schedule and chunksize as before, but they
do not measurably affect performance. This may be related to the fact that this com‐
putation is likely memory bound and not CPU bound, so we cannot expect perfect
speedup.

Using prange for Reductions | 211

The generated code for this example uses OpenMP’s reduction features to parallelize
the in-place addition. Because addition is commutative (i.e., the result is the same
regardless of the order of the arguments), additive reductions can be automatically
parallelized. Cython (via OpenMP) generates threaded code such that each thread
computes the sum for a subset of the loop indices, and then all threads combine their
individual sums into the resulting total. The nice part is that we just have to change
range to prange to see the performance boost.

For the record, the equivalent NumPy operation is:

frac = np.sum(counts == maxval) / float(counts.size)

It yields an identical result but takes approximately nine times longer to compute than
the prange version.

Interestingly, if we nudge the c value to 0.326 + 0.05j, the area fraction drops to 0.0.
This is consistent with the Julia set for this value of c, which is disconnected and nowhere
dense.

Parallel Programming Pointers and Pitfalls
Cython’s prange is easy to use, but as we see when computing the area fraction, prange
provides a speedup of only 3.5, which is noticeably less than the speedup of 5.5 when
we use prange to compute the corresponding Julia set. This boost is still far from perfect
scaling on an eight-core system. We are glad for the extra performance boost, but in
general it is very difficult to achieve perfect scaling, even when we have an embarrass‐
ingly parallel CPU-bound computation. This is true independent of using Cython: ach‐
ieving ideal parallel scaling is just plain hard.

To better illustrate why perfect utilization is often elusive, consider a typical stencil
operation like a five-point nearest-neighbor averaging filter on a two-dimensional C-
contiguous array. The core computation is conceptually straightforward—for a given
row and column index, add up the array elements nearby and assign the average to an
output array:

def filter(...):
 # ...
 for i in range(nrows):
 for j in range(ncols):
 b[i,j] = (a[i,j] + a[i-1,j] + a[i+1,j] +
 a[i,j-1] + a[i,j+1]) / 5.0

We can replace the outer range with prange, as we did with the Julia set computa‐
tions. But for this straightforward implementation, performance is worse, not better,
with prange. Part of the reason is that the loop body primarily accesses noncontiguous
array elements. Because of the lack of locality, the CPU’s cache cannot be as effective.

212 | Chapter 12: Parallel Programming with Cython

Besides nonlocality, there are other factors at play that conspire to slow down prange
or any other naive thread-based implementation of the preceding loop.

There are some rules of thumb for using prange:

• prange works well with embarrassingly parallel CPU-bound operations.
• Memory-bound operations with many nonlocal reads and writes can be challenging

to speed up.
• It is easier to achieve linear speedup with fewer threads.
• Using an optimized thread-parallel library is often the best way to use all cores for

common operations.

With these warnings in mind, it is nevertheless useful to have prange at our disposal,
especially given its ease of use. So long as our loop body does not interact with Python
objects, using prange is nearly trivial.

Summary
Cython allows us to circumvent CPython’s global interpreter lock, so long as we cleanly
separate our Python-interacting code from our Python-independent code. After doing
so, we can easily access thread-based parallelism via Cython’s built-in prange.

We saw in this chapter how prange can provide extra performance boosts for loop-
centric operations, and how prange provides control over how work is assigned to
threads. Thread-based parallelism in other languages is error prone and can be very
challenging to get right. Cython’s prange makes it straightforward and comparatively
easy to enable threads for many performance bottlenecks.

Summary | 213

CHAPTER 13

Cython in Context

The most important thing in the programming language is the name.
A language will not succeed without a good name. I have recently invented

a very good name and now I am looking for a suitable language.
— D. Knuth

In this last chapter, now that we have invested blood, sweat, and carpal tunnel syndrome
in learning the depth and breadth of the Cython language, it is worthwhile to consider
Cython in relation to other projects. As we have seen, Cython does many things well:
it brings optional static typing to the Python language, it compiles Python to C, and it
enables easy interoperability between Python, C, and C++. The greater Python world
is diverse, and it is no surprise that many projects—new and old— overlap with Cython
in some way. How does Cython match up, and what makes it relevant in the midst of
these other options? When embarking on a new Python project, why should we use
Cython?

Cython Versus Project X
Several Python projects fall under the category of “Python compiler.” Each translates
Python to another language (typically a lower-level natively compiled language) for
some benefit. Some, like Cython, target C or C++; others target JavaScript; still others
LLVM IR. Some are traditional in that they work ahead of time, while others are just-
in-time compilers.

Cython’s predecessor, Pyrex, is firmly in the traditional ahead-of-time compiler camp,
and Cython inherits much of its design. But Cython has extended to acquire just-in-
time compilation features, as we saw in Chapter 2.

215

The Cython core developers have discussed generalizing Cython to target other backend
languages, but C and C++ are and will be Cython’s primary targets.

Cython’s close ties to C and C++ come with many advantages:

• C and C++ are extremely well established languages with many high-quality free
and commercial compilers, and these compilers have benefited from several deca‐
des of optimization effort to generate very efficient binaries.

• C and C++ (and, in HPC contexts, Fortran) are the go-to languages as soon as
performance is an important consideration, meaning many existing high-
performance libraries are written in these languages.

• C and C++ are still actively growing and evolving; both languages have had recently
updated standards to incorporate new features and expanded standard libraries.

C and C++, as a rule, choose control and performance over safety and ease of use. For
instance, neither language provides automatic garbage collection (although there are
ways to approach that via C++ smart pointers). By providing a Python-like language
that is compiled to C and C++, Cython simplifies the task of programming in and with
these languages.

Other Ahead-of-Time Compilers for Python
Three other ahead-of-time Python compiler projects are worth noting:
Nuitka

Nuitka is a more recent Python-to-C++ compiler that supports all Python con‐
structs from 2.7 through 3.3. One of its main focuses is on automatically compiling
an entire Python application into a binary executable or extension module. It has
future plans for automatic type inference, ctypes integration, and some way to
inform Nuitka of type information it cannot determine unaided.

Shedskin
Shedskin is an experimental Python-to-C++ compiler that compiles to a standalone
binary without any CPython dependencies. It places some restrictions on the
Python it can compile—reassigning a variable to an object with a different type is
not allowed. This restriction allows Shedskin to use sophisticated type inference to
determine the C++ type of a variable. Like Nuitka, it works with pure Python and
therefore does not support static typing, but its type inference mitigates this to some
extent. It does not support calling out to external C++ code, however.

Pythran
Like Shedskin, Pythran is a Python-to-C++ compiler for a subset of the Python
language. Like Cython, Pythran provides a way to add type information to Python
code via inline comments to help it generate more efficient C++. It also has features

216 | Chapter 13: Cython in Context

http://nuitka.net/
https://code.google.com/p/shedskin/
http://pythonhosted.org/pythran/

to make use of SIMD instructions and automatic parallelization over multiple cores.
It is firmly in the scientific computing camp, and focuses its optimizations there. It
has some support for NumPy arrays, but not quite as much as Cython. It does not
support interfacing with external libraries.

Each of these projects provides a way to automatically generate C or C++ source from
Python code and automatically compile an extension module. None goes as far as Cy‐
thon does by extending the Python language, preferring instead to maintain pure-
Python compatibility. None has the longevity, widespread user base, or breadth of Cy‐
thon. In particular, all ignore interfacing existing C and C++ code with Python, which
is one of Cython’s major strengths.

Python Wrapper Projects
As discussed in Chapters 7 and 8, Cython has first-class support for interfacing Python
with external C and C++ libraries. When combined with the rest of the Cython
language—particularly its static typing features—this support makes Cython a powerful
tool to provide highly optimized wrappers.

Several standalone projects automate the process of generating Python bindings for C
and C++. The best-known projects in this space are SWIG and Boost.Python:
SWIG

SWIG is the king of the hill with regard to automatically wrapping C and C++. It
has been around since the 1990s, can generate wrapper code for 20 different target
languages—both mainstream and obscure—and offers sophisticated customization
features to the end user via typemaps. For all its strengths, it can be difficult to use
for advanced needs. Cython cannot hold a candle to SWIG’s full breadth of wrap‐
ping prowess. But Cython does have strengths when compared to SWIG: because
Cython focuses specifically on Python, its wrappers are better optimized and have
less runtime overhead when compared to SWIG’s. Also, because Cython provides
a full Python-like language to help wrap external code, it can be easier to use in
advanced cases. SWIG automates the wrapping process almost entirely, and is
therefore easier to use than Cython to wrap large libraries. If users require extensive
customization when wrapping a library, however, the advantage of SWIG over Cy‐
thon is less clear.

Boost.Python
The Boost project has the Boost.Python library to enable easy interoperability be‐
tween C++ and Python. It uses sophisticated C++ template metaprogramming to
generate Python wrappers for C++ libraries. As with Cython (and unlike with
SWIG), each C++ class, function, and method must be specified separately to be
wrapped. To help with this, it provides high-level C++ constructs to help in the
wrapping effort. Boost.Python also provides features to allow the direct manipu‐
lation of Python objects in C++ in a high-level way.

Cython Versus Project X | 217

http://swig.org/
http://bit.ly/boost_lib

There are several other wrapping tools for Python, but SWIG and Boost.Python are the
main contenders. Neither can compile existing Python code to C or C++, so they lack
what Cython provides there. Each can be thought of as providing an interfacing domain-
specific language to control how the wrappers are generated. Cython, in comparison,
has features to describe the external interface, but uses the full Python and Cython
languages to accomplish the interfacing.

To further narrow the gap, an up-and-coming project named XDress automatically
generates Cython wrappers for C and C++ libraries, making Cython easier to use for
large C- and C++- wrapping projects.

Just-in-Time Compilers for Python
At the other end of the spectrum are the just-in-time (JIT) Python compilers. These
stress ease of use and automatic compilation at runtime, with very little user input
required. Python JITs are a very active area of development, especially since the advent
of the LLVM project.

Some of the more widely known Python JITs are:
PyPy

PyPy is the oldest Python JIT compilation project in widespread use. It offers ease
of use and improved performance for unmodified Python code. It can yield nice
speedups for certain classes of operations, particularly operations on built-in
Python containers. PyPy does not offer the same level of control that Cython pro‐
vides—PyPy does what it does, and if the speedup is not satisfactory, there is little
that can be done. Cython, in contrast, often requires more effort to provide static
type information, but it also allows the end user to try many different approaches,
moving more code into C or C++ to improve performance. PyPy’s extension mod‐
ule support—including NumPy, SciPy, and the like—has traditionally been its
greatest weakness, although efforts are under way to address this. Because Cython
merges Python and C, and because generating extensions is its modus operandi, it
is in a much better position when it comes to interfacing.

Numba
Numba is an LLVM-based JIT compiler that is focused on speeding up array-
oriented and math-heavy Python code. Like all JIT compilers, it provides this
speedup automatically from within a single code base, so it is easier to use than
Cython in this respect. Cython can achieve nice speedups for this same subset of
operations, but it requires some static type information to help the cython compiler
generate efficient code. On the other hand, Cython’s ability to speed up non-
numeric Python code (using the built-in containers and non-numeric data types)
allows Cython to speed up general Python code that is not Numba’s primary focus.

218 | Chapter 13: Cython in Context

http://xdress.org/index.html
http://llvm.org/
http://pypy.org/
http://numba.pydata.org/

Pyston
Pyston is another Python JIT compiler project, currently in its infancy, that aims
to speed up general Python code, like PyPy. It takes a different approach than PyPy,
however, and like Numba, it is based on the LLVM project. From the outset it aims
to support interoperability with CPython extension modules.

In general, Cython is not as easy to use as JIT compilers, given that it typically relies on
inline static type declarations to generate efficient code. (The pyximport package and
the %%cython magic support in IPython do provide some degree of automatic compi‐
lation for Cython code, making Cython easier to explore.)

On the other hand, because JIT compilers stress ease of use and work with pure-Python
code, they do not provide the same level of control that a hybrid language like Cython
does. Cython allows the user to determine where on the Python-to-C spectrum to im‐
plement an algorithm; because of this, it is often possible to achieve better performance
by pushing more code into C or C++. Cython also provides code annotations to help
indicate where code is likely to be inefficient. When we are using a JIT compiler, it is up
to the compiler implementation to provide all optimizations. If the performance is not
satisfactory, then end users have little at their disposal to remedy the situation.

Cython also does not place any runtime dependencies on end users (other than the
Python runtime itself). This is in contrast to JIT compilers, which require the JIT com‐
piler infrastructure at runtime. Because Cython generates a standalone C or C++ source
file, a package developer can distribute just these generated files (or precompiled bi‐
naries) to end users. The extension module requires only the Python runtime and any
wrapped library components; Cython itself is not required when we are running a
Cython-generated extension module.

Summary
Cython is difficult to categorize succinctly: it is an ahead-of-time compiler, but the
pyximport package and %%cython IPython magic (Chapter 2) introduce aspects of just-
in-time compilers. Cython has powerful features to call into external C and C++ libra‐
ries, making it competitive with specialized binding generator projects like SWIG and
Boost.Python. Perhaps the best way to think of Cython is in the name itself: it fluidly
blends C and C++ with Python. It combines capabilities from all the major topics cov‐
ered in this chapter, and it does so in such a way that all components work well with
one another.

The open source Python world has widely adopted Cython, for good reason: it has
demonstrated its breadth and depth of features time and again in this competitive
environment, where life and death are based on technical merit and overall value. Large
and widely used projects such as Sage, Pandas, scikits-learn, scikits-image, and lxml use
Cython to provide highly optimized algorithms for all of their performance-critical

Summary | 219

https://github.com/dropbox/pyston

components. Projects such as MPI4Py, PETSc4Py, and (again) Sage use Cython for its
powerful wrapping features. Cython is also used pervasively in research and closed
source projects where performance improvements and interfacing Python with C or
C++ are necessary.

With this one multifaceted tool in hand, we can confidently bring Python’s dynamism
to C and C++, and bring the performance of C and C++ to Python.

220 | Chapter 13: Cython in Context

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
% (percent sign), % or %%, preceding magic

commands, 19
& (ampersand), address-of operator, 38
* (asterisk)

** operator, 76
in pointers, 38

+ (plus sign), addition operator, 94
-> (arrow operator), accessing struct member in

a pointer to a struct, 39
. (dot)

accessing nonpointer struct variable or
pointer to a struct, 39

using dot operator on C or C++ pointer, 143
< >, Cython casting operator, 90

A
*a syntax to dereference pointers, Cython and,

38
__add__ method, 94
annotations, 164

def and cpdef functions, 169
examples, 165, 168, 169, 198

api keyword, 127
arguments (function)

cpdef functions, 51
mixing dynamically and statically typed in

Cython, 48

arithmetic operations, Python versus C seman‐
tics, 6, 42

arithmetic special methods, 94
array.array type, 140, 173

creating million-element array to test typed
memoryview, 177

working with typed memoryviews, 199
arrays, 171

assignment to typed memoryviews, 181, 187
creating NumPy array to test typed memory‐

view, 177
in ctypes package, 173
NumPy, 172

memoryview from empty array, 175
memoryview of multidimensional array,

174
typed memoryviews acquiring buffers from,

181
types implementing new buffer protocol, 172
using NumPy arrays to manage data, 192
viewing a C array with a memoryview, 187
wrapping C and C++ arrays in Cython, 189

correct memory management with, 189
arrow operator (->), accessing struct member in

pointer to a struct, 39
assignment

assigning struct fields, 57
dynamically typed variables in Cython, 34
statically typed variables and, 35

221

automatic memory management, 45

B
basestring type, 66
Behnel, Stefan, 9
bint type, 40
bool type, 40
Boost C++ library, 155
Boost.Python, 217
bounds checking, turning off, 28, 178, 200
boundscheck compiler directive, 178
Bradshaw, Robert, 9
buffers

acquisition by typed memoryviews, 180, 183
original buffer syntax in Cython, 186

benefits of typed memoryviews over, 186
power of new buffer protocol, 172

memoryview type, 173
Python buffers and new buffer protocol, 172

build systems, 26
CMake and Cython, 26
make-based, using with Cython, 26
SCons and Cython, 26

builtin_function_or_method type, 48
bytearray type, 173

memoryview of, 174
bytecodes, 31
bytes type, 41

memoryview of a bytes object, 174
no differences in Python versions, 66
support for new buffer protocol, 173

C
C-contiguous typed memoryviews, 180, 186

declaring, 181
C/C++

arithmetic operations, 42
arrays, wrapping in Cython, 189

correct memory management with, 189
C standard library (libc), Cython declaration

for, 107
C++ standard library (libcpp), Cython dec‐

laration for, 107
C-level initialization and finalization for ex‐

tension types, 85
cdef declarations for common types, 36
code generated by cython compiler, 54
code, wrapping with Cython, 8

common C++ STL containers, definition
file, 107

comparing C with Python and Cython per‐
formance, 2

compilation, 11
compiled code, 32
compilers, 13
converting Python data structures to structs,

73
Cython and, 1
Cython’s close ties to, advantages of, 216
dynamically allocated arrays, 189
efficiency of code, Cython versus pure C

equivalent, 5
efficiency of compiled programs at runtime,

33
exposing Cython code to C, 126
external functions wrapped in Cython, de‐

claring as nogil, 203
functions, 46
header files, similarities of definition files to,

109
inline keyword, 51
prerequisite knowledge for Cython, xii
Python wrapper projects, 217
spectral norm implementation, comparing

to Cython, 200
static typing, 32
type coercion and casting, 55
type correspondence with Python types, 40
wrapping C libraries with Cython, 115–134

constants, other modifiers, and control‐
ling what Cython generates, 125

declaring and wrapping structs, unions,
and enums, 119

declaring external C code in Cython, 115
declaring external C functions and type‐

defs, 118
error checking and raising exceptions,

128
wrapping functions, 121
wrapping structs with extension types,

122
wrapping C++ libraries with Cython, 135–

157
exceptions, 144
memory management, RAII, and smart

pointers, 154

222 | Index

simple example, MT_RNG class, 135–
144

stack and heap allocation of C++ instan‐
ces, 145

templates, 147–154
working with C++ class hierarchies, 146

__call__ method, 143
callbacks

and exception propagation, 133
using except clause with cdef callbacks, 128

casting
and subclasses, 90
in Cython, 55

using checked casting operator, 56
memoryview casting syntax, assigning array

to a memoryview, 188
cdef keyword

api keyword with, 127
C functions in Cython defined with, 49

exception handling and, 51
cdef class statement, 81
cdef cppclass block, 143
cdef extern blocks in definition file, 106
cdef extern from declarations, 118
cdef extern statement

C++ namespaces and, 137
namespace clause, 136

declaring instance attributes in extension
type, 82

defining enums with, 58
defining extension type methods, 86
defining function pair to convert between

Python and C data types, 73
defining function with nogil attribute, 202
functions defined with, no Python function

call overhead, 169
public keyword used with, 126
readonly declaration of instance attributes in

extension type, 83
static type declaration with, 34

C pointers in Cython, 37
declarations for common C types, 36
declaring struct variables in Cython, 120
mixing static and dynamic variables, 39
Python types, 41

struct and union declarations, 57
@cdivision decorator, 198
chained comparisons, 98

char * type, 40, 41
conversion to unicode object, 66

checked casting operator, 56, 91
cimport statement, 101, 105

cimporting from cython namespace, 38
for Cython definition file in Python package,

111
importing definition file, 106
multiple named cimports, 108
providing alias to definition file and declara‐

tions, 106
Python-level objects and, 106
using cimport and import for namespace-

like object having same name, 108
using cimport and import with different

functions with same name, 108
using instead of include, 110
using with a module in a package, 108
using with an alias, 108
using with an object from a dotted module

name, 108
using with C++ STL template classes, 108

__cinit__ method, 85, 123, 137
classes (Python)

attribute access, 83
comparing with extension types, 79
converting to extension types in Cython, 80

classmethod constructor, 85
CMake build system, 26
code annotation, 165
code examples from this book, xv

repository, 2
code, organizing (see Cython, organizing code)
command line

Cython standalone executables, running
from, 27

setting compiler directives with --directive
or -X option, 28

comments, directive, 28
comparison special methods, 96
compiled versus interpreted languages, 11
compiler directives, 28

boundscheck and wraparound, 178
cdivision, 42, 169
cdivision_warnings, 43
comprehensive list of, 29
c_string_type, 66
c_string_type and c_string_encoding, 41
embedsignature, 53

Index | 223

in directive comments, 28
infer_types, 37
nonecheck, 92
overflowcheck and overflowcheck.fold, 40
profile, enabling globally in Cython module,

163
setting from command line, 28
using for distutils script to compile C++, 139

compilers
C or C++ compiler support, for OpenMP,

204
compiling with OpenMP enabled, 208
cython and C/C++, 13
just-in-time (JIT) Python compilers, 218
Windows, 17

compiling Cython, 11–29
C functions wrapped in Cython, 121
C++ project, 138
C/C++ compiler, 13
compilation pipeline, 12

C/C++ code, compiling into shared li‐
brary, 12

transforming Cython source into C or C
++, 12

distributable compiled package, 113
extension type into extension module, 123
interactive Cython with IPython, 19
manually, 24
on-the-fly with pyximport, 21–24
options, 11
using Cython with other build systems, 26

CMake, 26
make-based systems, 26
SCons, 26

using distutils and cythonize, 14
distutils on Mac OS X and Linux, 15
distutils on Windows, 16
setup.py distutils script, 15

complex types, 41
computer language benchmarks game, 69, 193
conditional compilation, 64
conjugate method, 41
const keyword (in C), 36
constants, 125

DEF constants in Cython, 63
constructors (Python), 85
containers

C++, conversions to and from Python ana‐
logues, 152

Cython support for built-in containers, 171
looping over, 62

context manager
compiler directives, setting, 29
nogil, 203
turning off bounds and wraparound check‐

ing, 178
contiguous data packing, typed memoryviews,

180
cpdef keyword

cpdef function example, 111
Cython-compiled functions, injecting

Python signature, 53
defining extension type methods, 86
defining functions with, 50

exception handling and, 51
limitations of, 51

cppclass keyword, 136
cProfile module, 159

run call, using to profile integrate function,
160

CPython
and relation to Cython, 2
automatic memory management, 45
python-config utility, 26

cpython declaration package, 107
cpython.array, 177
ctypedef keyword, 118

combining struct and union declarations
with, 57

declaring C struct, 123
declaring C structs, unions, and enums, 120
declaring typedefs in Cython, 118
fused statement, 60
type aliasing with, 59

ctypes package, arrays in, 173
Cython

adoption of, 67
use in data analysis and scientific com‐

puting, 68
array features, 171

power of new buffer protocol, 172
support for Python buffer protocol and

NumPy arrays, 172
bridging Python 2 and Python 3 divide, 64–

67
strings and string types, 66

bringing static typing to a dynamic language,
34

224 | Index

C pointers in, 37
cdef keyword, static type declaration with, 34
comparing with Python and C performance,

2
pure-C code, 5
reasons for Cython performance im‐

provements, 5
compilation, 11
concerns over C type limitations, 7
Cython-only features, 9
declarations and definitions, 104
declaring and using structs, unions, and

enums, 56
example, converting Python N-body simula‐

tor code to, 71–77
exposing Cython code to C, 126
extension types (see extension types)
for loops and while loops, 61

example, 62
guidelines for efficient loops, 61

functions
C functions defined with cdef, 49
defining with cpdef, 50
embedsignature compiler directive, 53
exception handling, 51
kinds of, 46
Python functions defined with def key‐

word, 46
fused types and generic programming, 59
in context, 215–220

Cython versus Project X, 215
just-in-time (JIT) Python compilers, 218
other ahead-of-time compilers for

Python, 216
Python wrapper projects, 217

installing, 13
interfacing with external code, 7
memoryviews and buffers, 175
OpenMP and, 204
organizing code, 101–113

cimport statement, 105–109
compiling Cython modules in Python

packages, 110–113
implementation (.pyx) and declaration

(.pxd) files, 102
include files and include statement, 109

origins of, 9
preprocessor, 63
stack and heap allocated C++ objects in, 146

standalone executables, 27
static typing for speed, 43
statically declarable Python types, built-in,

44
support for full range of C declarations, 36
type inference, automatic, 36
versus CPython, 2
why it speeds up Python code so well, 31
wrapping C code with, 8
wrapping C libraries with, 115–134

cython compiler, 1
--annotate flag, 165
--directives flag, 179
--embed flag, 27
-2 and -3 flags, 65
called by distutils setup.py script on Mac OS

X, 16
generated C code, 54
generating and compiling C/C++ code, 24
options, 24

%%cython magic command, 20
Cython.Build package, 113
cython.floating fused type, 183
cython.operator.dereference operator, 38
cython.operators magic module, 142
@cython.profile(True) decorator, 163
cythonize command, 14, 15

compiling Cython modules in Python pack‐
age, 113

D
data structures (Python), 72

converting to structs, 73
__dealloc__ method, 86, 123, 138
declarations, 104

Cython support for full range of C declara‐
tions, 119

extern block, 115
def keyword

Cython-compiled functions, injecting
Python signature, 53

for C functions wrapped in Cython, 121
Python functions in Cython defined with, 46

exception handling and, 51
returning a typed memoryview from a def

function, 189
wrapping a cdef function in a def function,

50
DEF keyword, 63

Index | 225

definition (.pxd) files, 101
cdef extern blocks in, 106
cimporting, 106
contents of, 104
created from Python modules converted to

Cython, 111
excluded content, 105
for C++ container classes, 151
only C-level declarations in, 103
predefined, for Cython, 107
simulator.pxd (example), 103

definitions, 104
__del__ method, 94
delete operator (C++), 138
dependencies

build systems and, 27
managing with pyximport, 22
pyximport example with external dependen‐

cies, 23
dereference Cython operator, 143
dereferencing pointers, 38
dimensions (typed memoryiews), 180
direct or indirect access, typed memoryviews,

180
directive comments, 28
distutils, 14

compiling N-body code using setup.py script
(example), 71

compiling spectral_norm.pyx (example), 197
compiling with, on Mac OS X and Linux, 15
compiling with, on Windows, 16
compling C++ class wrapped in Cython, 138
setup.py script for, 15
using cythonize function with, 113

distutils.sysconfig module, 26
division and modulus operations, C versus

Python, 42
-DMS_WIN64 compiler flag, 17
domain-specific language, 218
double complex C-level type (Cython), 41
double type, 44

conversion between Python float type and, 8
dynamic dispatch, 33
dynamic library (.pyd) files, 12
dynamic typing, 32

Cython’s use of general Python method
lookups on dynamically typed objects, 90

dynamic variables initialized from statically
declared Python types, 42

untyped dynamic variables in Cython, 34
dynamic_particles object (example), 43

E
element type (typed memoryviews), 180
embedsignature compiler directive, 53
enums

aliases for names in Cython, 125
declaring and wrapping in Cython, 119
defining in Cython, 58

__eq__ method, 96
error checking, external C functions wrapped in

Cython, 128
Ewing, Greg, 9
except clause, 52, 128

except *, 53
except?, 52
using when declaring cdef callbacks, 133

exception handling
custom exception handler translating C++

exceptions to Python, 145
functions and, 51

exceptions
C++, 144

bad_alloc exception, converting to
Python MemoryError (example), 144

mapping to Python exceptions, 144
propagation, callbacks and, 133
raising Python exception from C function

error code, 128
executable binary, compiling with Cython, 27
extension modules, 12, 32

building and compiling for N-body simula‐
tor (example), 72

compiling extension type wrapping C++
class, 138

compiling fib.c file into, with cython (exam‐
ple), 25

distutils Extension objects returned by cy‐
thonize, 15

using, 17
extension types, 79–99

accessing instance attributes, 83
C++ smart pointers as attributes in, 156
C-level initialization and finalization, 85
cdef and cpdef methods, 86
comparing with Python classes, 79
defined, 80
in Cython, 80

226 | Index

inheritance and subclassing, 89
casting and subclasses, 90
extension type objects and None, 91

properties in Cython, 92
special methods, 94

iterator support, 98
rich comparisons, 96
__radd__ method and, 94

wrapping C structs with, 122
wrapping C++ class, 137

creating and initializing C++ object, 137
pointer to heap-allocated C++ object, 137

extern block statement, 115
declaring C struct, 122
declaring every function as nogil, 203
declaring external C functions and typedefs,

118
misconceptions about, 117
removing unnecessary C modifiers, 125

extern keyword, bare extern declarations, 116

F
fib function (example)

C implementation, wrapping in Cython, 8
converting from Python version to Cython,

2
performance, comparing for different imple‐

mentations, 3
finalization, C-level, Cython support through

__dealloc__ method, 86
finalizer class, 190

calling __dealloc__ method at cleanup, 192
float complex C-level type (Cython), 41
float type (Python), 44

conversion between C double and, 8
converting to C float, 41

floating fused type, 59
floating-point numbers, 6
for loops

expanded, in annotated integrate (example),
166

in annotated integrate with static typing (ex‐
ample), 168
func argument and, 168

in Cython, 61–63
converting to use static types, 74
ensuring efficiency of, 61
example, 62

Python versus compiled languages, 6

using prange with, 204
format attribute (memoryview), 175
Fortran-contiguous typed memoryviews, 180,

181
function call overhead, 5
function pointers, 36
function type (Python), 48
functions

alias for C function name in Cython, 125
and embedsignaure compiler directive, 53
C functions in Cython with cdef keyword, 49

problems with Python objects and C
types mapping, 50

restriction on, 49
C++ templated functions, 148

rotate, 150
calling in GIL-less context, nogil attribute,

202
declared in definition file, 106
declaring external C functions in Cython,

118
declaring local variables in, with cdef, 35
def and cdef, combining with cpdef, 50
def function in Cython with typed memory‐

view argument, 176
defined in Cython, mixing dynamically and

statically typed arguments, 48
enabling type inference for, 37
exception handler to translate C++ excep‐

tions to Python, 145
exception handling and, 51

Cython except clause for cdef or cpdef
functions, 52

external C functions wrapped in Cython, er‐
ror checking and raising exceptions, 128

external C/C++ functions, declaring as no‐
gil, 203

for defining DEF constants, 64
overloaded C++ functions, wrapping, 141
Python, performance gains when compiled

with Cython, 7
raising C++ exceptions, 144
wrapping external C functions in Cython,

121
C functions taking function pointer call‐

backs, 128
fused types, 59

typed memoryviews and, 182
wrapping C++ templated functions, 148

Index | 227

G
gcc, 13

calls to, in Mac OS X compilation with distu‐
tils, 16

instructing to create shared library, 25
__get__ method, 93
get_config_var function, 27
global interpreter lock (GIL), 201

nogil context manager, 203
nogil function attribute, 202

H
header files

often-used, predefined definition files for,
107

similarities of definition files to, 109
heap allocation

C arrays, memoryviews viewing, 189
of C++ instances, 146
stack allocation versus, 6

I
identity (objects), 79
IF compile-time statement, 109
IF-ELIF-ELSE statement, 64
imag attribute, 41
implementation files, 101

converting Python modules into, 111
definition of all objects in, 104
importing with cimport statement, 105
simulator.pyx (example), 102

breaking up into subcomponents, 103
import statement, 101, 106

using import and cimport for namespace-
like objects having same name, 108

using import and cimport with different
functions with same name, 108

using instead of cimport for extension type
or cpdef function, 106

include files, 101
C++ STL container classes, 152
using in platform-independent design, 109

#include preprocessor directive, 109, 117
@include preprocessor directive, 116
include statement, 109

using cimport instead of, 110
using twice with same source file, 110

Includes directory, Cython, 107
indexes (typed memoryview), 178

C- or Fortran-contiguous typed memory‐
views, 181

indexing into a pointer at location 0, 38
infer_types compiler directive, 37
inheritance

extension classes, 89
working wih C++ class hierarchies, 146

__init__ method, 85
inline keyword, 51
installing Cython

source code download and installation, 14
via packaged software distribution, 13

instance attributes (extension types), 81
accessing, 83
making both readable and writeable from

Python, 84
not accessible from Python, 82

instance dictionary, 79
int type

correspondence between Python and C int,
39

grouping C ints into dynamic Python tuple,
39

Python, 40, 44
conversion to C int, 8

integers
integral type conversions and overflow, 40
Python versus C integral types, 48

integral fused type, 59
integral_max implementation (example), 59

integrate module
adding static type information to, 162
adding static typing to integrate, 167
annotating integrate without static typing,

165
compiling sin2 function, 162
converting to extension module, 161
profiling Cythonized version, 161
profiling pure-Python version, 160
profiling statically typed version, 162
writing cdef version of integrate and turning

on cdivision, 169
integrators, 69
interpreted versus compiled execution, 31
interpreted versus compiled languages, 11
interpreter (Python)

dynamic dispatch, 33

228 | Index

embedding in Cython-generated source file,
27

initialization by external C code calling into
Cython code, 126

IPython
installation, 14
interactive Cython with magic commands,

19
introspection features, providing details

about extension module, 17
__iter__ method, 98
iterators

C++ templates, 150
extension type special methods for, 98
iterating through a typed memoryview, 177
using standard C++ container objects in Cy‐

thon, 154

J
just-in-time (JIT) Python compilers, 218

L
__le__ method, 96
Linux

C/C++ compiler, 13
compiling executable binary with python-

config, 27
compiling with distutils, 15

%load_ext magic command, 19
local variables, declaring in a function with cdef,

35
long type (in C), 44
looping, in Python versus compiled languages, 6
loops

Cython for loops and while loops, 61
example, 62
guidelines for efficient loops, 61

parallelizing with prange, 204
Python for loops and while loops, 6

__lt__ method, 96

M
Mac OS X

C/C++ compiler, 13
compiling executable binary with python-

config, 27
compiling with distutils, 15

macros, 63
declaring C macro in Cython, 118

magic commands, 19
magic numbers, 63
main function

embedding Python interpreter in, 27
running in nbody extension module (exam‐

ple), 71
make-based build systems, using Cython with,

26
make_ext function, 23
make_setup function, 23
math operations, Python versus C and Cython,

6
memory management

automatic, in Python and Cython, 45
C++ shared pointers working wih Python

reference counting, 155
correct, with Cython and C arrays, 189
smart pointers in C++, 154
stack versus heap allocation, 6

memory-bound operations, performance and, 7
memoryview type, 173

attributes querying underlying buffer’s meta‐
data, 174

format strings, 175
memoryview of immutable bytes object, 174
memoryview of mutable buffer like bytear‐

ray, 174
modifying mutable memoryview, 174
slicing with arbitrary start, stop, and step

values, 174
support for structured data types, 175

memoryviews, typed, 176
C-level access to data, 177
declaring and controlling attributes, 179
example of, 176
fused types and, 182
returning NumPy array to view C arrays, 189
trading safety for performance, 178
using, 183

original buffer syntax and, 186
to access and modify NumPy arrays from

Cython, 192
with C-level arrays, 187
with functions in spectral norm, 198

methods, 79
calling in extension types, 85
cdef extension type methods, 86

Index | 229

cpdef extension type methods, 86
defined in cdef class extension types, 83
overloaded C++ methods, wrapping, 140
special, 94

arithmetic methods, 94
iterator support, 98
rich comparisons, 96

mingw compiler, 17
modifiers, C-level, removing in Cython, 125
modules, 101

Cython, organizing and compiling in Python
packages, 110–113

using cimport with a module in a package,
108

modulus, computing, C versus Python, 42
more_inference(), 37
msvc compiler flag, 17
mult function, 54

C code generated by cython compiler, 54

N
N-body simulator (example), 69–77

converting pure Python code to Cython, 71
converting data structures to structs, 73
Python data structures and organization,

72
running Cythonized version, 75

Python code, 69
namespaces

declaring C++ namespace with Cython
namespace clause, 136

nested, declaring to Cython, 137
ndim attribute (memoryview), 174
new operator, 137
__next__ method, 98
nogil function attribute, 202
None object, 91

not None clause in Cython, 92
nonecheck compiler directive, 92

setting for extension module, 28
Nuitka, 216
NULL pointer (in C), 91
Numba, 218
numeric fused type, 59
NumPy

arrays, 172
memoryview of multidimensional array,

174

ascontiguousarray and asfortranarray func‐
tions, 182

ndarray object, 172
structured dtype, 175

numpy declaration package, 107
NumPy/C API, 190

including NumPy headers when compiling,
191

O
objects (Python), 37, 79

working with in Cython, 44
OpenMP, 204

compiling with OpenMP enabled, 208
operator overloading

in C++, Cython support for, 142
Python syntax for, 143

operators
C++ operators implemented as external

functions, 144
overloading, support with Cython extension

types, 94
overflow, integral type conversions and, 40
OverflowError, 40

P
packages, 101

Python, organizing and compiling Cython
modules in, 110–113

parallel programming with Cython, 201–213
parallel programming pointers and pitfalls,

212
thread-based parallelism and the global in‐

terpreter lock, 201
nogil context manager, 203
nogil function attribute, 202

using prange for reductions, 210
using prange to parallelize loops, 204

prange options, 209
Pareto principle, 7, 68
particles, 42

appending Particle object to dynamic_parti‐
cles object, 43

performance
Cython N-body simulator versus Python

version (example), 75
Cython-generated C code versus hand-

written C, 13

230 | Index

fib function (example), comparing for differ‐
ent implementations, 3
function call overhead, 5

gains, Python code compiled with Cython, 7
Python versus statically typed compiled lan‐

guages, 1
pointers

C pointers in Cython, 37
dereferencing, 38
pointers to structs, 39

dereferencing, 143
NULL pointer in C, 91
smart pointers in C++, 154

declaring smart_ptr template class inter‐
face to Cython, 155

to heap-allocated C++ object in extension
type, 137

polymorphism
in extension types, 89
using in C++, 147

prange function, 204
using, 204–213

guidelines for, 212
preprocessor, 63
print function (C language), wrapping in Cy‐

thon, 125
profile compiler directive, 163
profile module, 159
profiling examples

Cythonized version of spectral norm, 197
pure-Python N-body simulator code, 71

profiling tools, 159–170
performance profiling and annotations,

164–170
runtime profiling, 159–164

Cythonized version of integrate, 161
enabling profile compiler directive glob‐

ally in extension module, 163
imported functions and, 163
selectively profiling functions, 163

using annotations and runtime profiling to‐
gether, 170

projects using Cython, 67
properties

extension type, in Cython, 92
in Python, 92

property function, 92
public keyword, adding to C-level type variable,

or function declared with cdef, 126

pure-Python mode (Cython), 12
.pxd files, 101
.pxi files, 101
.py files, 102
PyArrayObject, base attribute, 190
PyArray_SetBaseObject function, 190
.pyd files, 12
PyIntObject, 44
PyList_Append function, 43, 56
PyList_SET_ITEM function, 43, 56
PyLongObject, 44
PyNumber_Multiply function, 54
PyObject_Call function, 43
PyObject_GetAttr function, 43
PyPy, 218
Pyrex, 9, 215
Pyston, 219
Python

arithmetic operations, 42
calling cdef function defined in Cython, 50
classes, comparing with extension types, 79
comparing with C and Cython performance,

2
correspondences of types with C/C++ types,

40
Cython code in pure-Python mode, 12
differences from C-like languages, 1
distutils package, 14
dynamic typing, 32
foundational projects, Cython use in, 67
functions, 46
implementations in other languages, Cython

versus, 2
integral types, conversions to C and over‐

flow, 40
N-body simulator code (example), 69

data structures and organization, 72
performance gains when compiled with Cy‐

thon, limitations of, 7
prerequisite knowledge for Cython, xii
properties in, 92
types, statically declaring variables with, 41
using Cython wrapper for C++ class, 139
versions, Python 2 and Python 3, 64–67

strings and string types, 66
wrapper for C implementation of fib func‐

tion (example), 8
wrapping in C, 126

Python Imaging Library (PIL), 173

Index | 231

python-config utility, 25, 26
compiling executable binary on Mac OS X

or Linux, 27
Python/C API, 2

calling into, versus equivalent operation in
straight-C code, 164

implementation of built-in types, 79
Pythran, 216
.pyx files, 101
.pyxbld file extension, 22, 139
.pyxdeps file extension, 22
pyximport, 21

compiling and importing Cython code, 22
compiling Cython source into extension

modules in Python package, 112
compiling extension module from wrapped

C++ class, 139
controlling and managing dependencies, 22
example with external dependencies, 23

py_fact function (example), 46
accessing and using fact.py_fact, 47
defining pure-Python version, 47
putting in fact.pyx file and compiling, 47
two versions, comparing, 47

Q
qsort C function (example), wrapping in Cy‐

thon, 128

R
__radd__ method, 94
real and imag attributes, 41
reductions, using prange for, 210
reference counting, 45

support by shared_ptr smart pointer, 154
%reset magic command, 192
return types

cdef functions, 49
cpdef functions, 51

__richcmp__ method, 96
rotate templated function (C++), 150
%run magic command, 160
runtime language version, 65

S
Sage project, 9
SCons build system, 26

SDK C/ C++ compiler, Windows, 17
__set__ method, 93
setup.py script, 15

build_ext subcommand, 16
invoking from command line on Mac OS X

or Linux, 15
shape attribute (memoryview), 174
shared-object (.so) files, 12
shared_ptr smart pointer, 154
Shedskin, 216
signature (function), 53

injecting compiled function’s Python signa‐
ture with embedsignature, 53

sin2 function (example), 160
compiling in Cython, 162
using C library sin instead of Python

math.sin, 163
source files, Cython file types, 101
source language version, 65
special methods (see methods, special)
spectral norm (example), 193–200

comparing Cython’s performance to C im‐
plementation, 200

Cythonizing the code, 197
adding static type information, 198
compiling and running Cythonized ver‐

sion, 197
creating main.py driver script, 197
setup.py script to compile .pyx file, 197
using typed memoryviews, 198

overview of Python code, 193–195
performance profiling of pure-Python ver‐

sion, 196
sqrt function, 76
stack allocation

of C++ instances, 145
versus heap allocation, 6

standalone executables, 27
static keyword (in C), 36
static typing, 32

for speed, 43
static variables with C types and C semantics, 35
std::string type, 41

conversion to unicode object, 66
Stein, William, 9
str type (in Cython), 41

built-in string type in Python 2.6 and 2.7,
172

equivalent Python types, 66

232 | Index

strided data packing (typed memoryviews), 180
strides attribute (memoryview), 175
strides of an array, 175
strings

differences in Python 2 and Python 3, 66
static string types, reference counting and,

45
structs

aliases for names in Cython, 125
converting Python data structures to, 73
declaring and using in Cython, 56

initializing a struct, 57
nested and anonymous declarations, 58

declaring and wrapping in Cython, 119
for instance attributes in extension types, 82
pointers to, 39
wrapping with extension types, 122

subclassing
C++ classes, 147
casting and subclasses, 90
extension types, 89

super function, 89
SWIG, 217
symplectic integrators (example), 70
SystemError exception, 56

T
templates (C++), 147–154

included STL container class declarations,
151

iterators and nested classes, 150
templated classes, 149
templated functions and Cython’s fused

types, 148
temporary variables, 45
thread-based parallelism and the global inter‐

preter lock, 201
nogil context manager, 203
nogil function attribute, 202

%timeit magic command, 47, 160
try/except block (Python), 144
tuples (Python)

grouping static C ints into, 39
N-body simulator (example), 72

unpacking, 73
type aliasing with ctypedef, 59
type inference, automatic, in Cython, 36
typed memoryviews (see memoryviews, typed)

typedefs
aliases for names in Cython, 125
declaring in Cython, 118

types
coercion and casting, 55
complex types, 41
conversion, C code wrappted in Cython, 8
correspondences between built-in Python

types and C/C++ types, 40
cpdef function arguments and return types,

51
dynamic versus static typing, 32
dynamically typed Python function, convert‐

ing to Cython, 2
floating-point type conversions, 41
for defining DEF constants, 64
fused types in Cython, 59
implementing new buffer protocol, 172
integral type conversions and overflow, 40
object type, 79
Python built-in types, 79

having same name as C types, 42
Python types having direct C counterparts,

44
statically declaring variables with a Python

type, 41

U
Unicode encodings, conversion of C strings to,

66
unicode type, 41

equivalent Python types, 66
unions

aliases for names in Cython, 125
declaring and using in Cython, 56

nested and anonymous declarations, 58
declaring and wrapping in Cython, 119

V
value (objects), 79
variables

C++ reference variables, 148
declaring with struct type in Cython, 57
dynamic and static, important difference be‐

tween, 35
statically and dynamically typed, mixing, 39
statically typing in Cython, 34
untyped dynamic variables in Cython, 34

Index | 233

using temporary Python variables, 45
vector templated class, 149

using vector’s iterator from Cython, 150
virtual machine (VM), 31
Visual Studio, 17

W
while loops

in Cython, 61
efficiency of, 62

in Python, 6
Windows systems

C/C++ compiler, 13
compiling with distutils, 16

wraparound checking, turning off, 29, 200
wraparound compiler directive, 178
wrapping C libraries with Cython, 115–134

constants, other modifiers, and controlling
what Cython generates, 125

declaring and wrapping C structs, unions,
and enums, 119

declaring external C code in Cython, 115
no automation of wrapping, 117

declaring external C functions and typedefs,
118

error checking and raising exceptions, 128
wrapping C functions, 121

wrapping C structs with extension types, 122
wrapping C++ libraries with Cython, 135–157

C++ templates, 147–154
included STL container class declara‐

tions, 151
iterators and nested classes, 150
templated classes, 149
templated functions and Cython’s fused

types, 148
exceptions, 144
memory management, RAII, and smart

pointers, 154
simple example, MT_RNG class, 135

compiling with C++, 138
declaring class interface for use in Cy‐

thon, 136
operator overloading, 142
overloaded methods and functions, 140
using the wrapper from Python, 139
wrapper extension type, 137

stack and heap allocation of C++ instances,
145

working with C++ class hierarchies, 146

X
XDress, 218
XML parser (lxml), use of Cython, 68

234 | Index

About the Author
Kurt W. Smith has been using Python in scientific computing ever since his college
days, looking for any opportunity to incorporate it into his computational physics
classes. He has contributed to the Cython project as part of the 2009 Google Summer
of Code, implementing the initial version of typed memoryviews and native Cython
arrays. He uses Cython extensively in his consulting work at Enthought, training hun‐
dreds of scientists, engineers, and researchers in Python, NumPy, Cython, and parallel
and high-performance computing.

Colophon
The animal on the cover of Cython is a South African python (Python sebae natalen‐
sis). Also known as the South African rock python or the natal rock python, it was first
identified by Sir Andrew Smith in 1833 and is variously labeled a subspecies of or a
distinct but closely related species to the African rock pythons native to parts of the
African continent farther north. The South African python is found in areas near per‐
manent bodies of water from Kenya to South Africa, and, though generally smaller than
its more northern relative, can grow to a length of 20 feet. The subocular mark that
appears as a rule on the northern variation is smaller or entirely absent on the South
African python.

The nonvenomous South African python regularly consumes animals as large as goats,
which it kills by coiling itself around prey and constricting the coil with every inward
breath of its victim. As with the heat-sensitive organs between the eyes and nostrils of
pit vipers, pits in and around scales on the lips of the African rock python permit these
snakes to hunt warm-blooded prey in the dark. Attacks on humans are rare but not
unprecedented.

A female South African python lays a clutch of up to 100 hard-shelled eggs in the spring.
Like other python mothers, she will then coil herself around the clutch until the eggs
hatch 2 to 3 months later. Recent evidence suggests African rock python mothers will
even continue to defend the brood for weeks or months after the eggs have hatched.

Like the Burmese python, the African rock python has arrived in recent years as an
uninvited guest to the Florida Everglades, where it poses a significant threat to native
wildlife. Along with several other decidedly unwelcome nonnative reptile species, it has
been targeted by local officials in eradication efforts.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book?
	Prerequisites

	Who Should Not Read This Book?
	Outline
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Cython Essentials
	Comparing Python, C, and Cython
	Function Call Overhead
	Looping
	Math Operations
	Stack Versus Heap Allocation

	Tempering Our Enthusiasm
	Wrapping C Code with Cython
	Summary

	Chapter 2. Compiling and Running Cython Code
	The Cython Compilation Pipeline
	Installing and Testing Our Setup

	The Standard Way: Using distutils with cythonize
	Our distutils Script
	Compiling with distutils on Mac OS X and Linux
	Compiling with distutils on Windows
	Using Our Extension Module

	Interactive Cython with IPython’s %%cython Magic
	Compiling On-the-Fly with pyximport
	Controlling pyximport and Managing Dependencies
	pyximport Example with External Dependencies

	Rolling Our Own and Compiling by Hand
	Using Cython with Other Build Systems
	CMake and Cython
	SCons and Cython
	Make and Cython

	Compiler Directives
	Summary

	Chapter 3. Cython in Depth
	Interpreted Versus Compiled Execution
	Dynamic Versus Static Typing
	Static Type Declaration with cdef
	Automatic Type Inference in Cython
	C Pointers in Cython
	Mixing Statically and Dynamically Typed Variables
	Statically Declaring Variables with a Python Type
	Static Typing for Speed
	Reference Counting and Static String Types

	Cython’s Three Kinds of Functions
	Python Functions in Cython with the def Keyword
	C Functions in Cython with the cdef Keyword
	Combining def and cdef Functions with cpdef
	Functions and Exception Handling
	Functions and the embedsignature Compiler Directive

	Type Coercion and Casting
	Declaring and Using structs, unions, and enums
	Type Aliasing with ctypedef
	Cython for Loops and while Loops
	Guidelines for Efficient Loops
	Loop Example

	The Cython Preprocessor
	Bridging the Python 2 and Python 3 Divide
	str, unicode, bytes, and All That

	Summary

	Chapter 4. Cython in Practice: N-Body Simulation
	Overview of the N-Body Python Code
	Converting to Cython
	Python Data Structures and Organization
	Converting Data Structures to structs
	Running the Cythonized Version

	Summary

	Chapter 5. Cython and Extension Types
	Comparing Python Classes and Extension Types
	Extension Types in Cython
	Type Attributes and Access Control
	C-Level Initialization and Finalization
	cdef and cpdef Methods
	Inheritance and Subclassing
	Casting and Subclasses
	Extension Type Objects and None

	Extension Type Properties in Cython
	Special Methods Are Even More Special
	Arithmetic Methods
	Rich Comparisons
	Iterator Support

	Summary

	Chapter 6. Organizing Cython Code
	Cython Implementation (.pyx) and Declaration (.pxd) Files
	The cimport Statement
	Predefined Definition Files

	Include Files and the include Statement
	Organizing and Compiling Cython Modules Inside Python Packages
	Summary

	Chapter 7. Wrapping C Libraries with Cython
	Declaring External C Code in Cython
	Cython Does Not Automate Wrapping

	Declaring External C Functions and typedefs
	Declaring and Wrapping C structs, unions, and enums
	Wrapping C Functions
	Wrapping C structs with Extension Types
	Constants, Other Modifiers, and Controlling What Cython Generates
	Error Checking and Raising Exceptions
	Callbacks
	Callbacks and Exception Propagation

	Summary

	Chapter 8. Wrapping C++ Libraries with Cython
	Simple Example: MT_RNG Class
	The Wrapper Extension Type
	Compiling with C++
	Using Our Wrapper from Python
	Overloaded Methods and Functions
	Operator Overloading

	C++ Exceptions
	Stack and Heap Allocation of C++ Instances
	Working with C++ Class Hierarchies
	C++ Templates
	Templated Functions and Cython’s Fused Types
	Templated Classes
	Iterators and Nested Classes
	Included STL Container Class Declarations

	Memory Management and Smart Pointers
	Summary

	Chapter 9. Cython Profiling Tools
	Cython Runtime Profiling
	Performance Profiling and Annotations
	Summary

	Chapter 10. Cython, NumPy, and Typed Memoryviews
	The Power of the New Buffer Protocol
	The memoryview Type

	Typed Memoryviews
	Typed Memoryview Example
	C-Level Access to Typed Memoryview Data
	Trading Safety for Performance
	Declaring Typed Memoryviews
	Using Typed Memoryviews
	Beyond Buffers

	Wrapping C and C++ Arrays
	Correct (and Automatic) Memory Management with Cython and C Arrays

	Summary

	Chapter 11. Cython in Practice: Spectral Norm
	Overview of the Spectral Norm Python Code
	Performance Profiling
	Cythonizing Our Code
	Adding Static Type Information
	Using Typed Memoryviews

	Comparing to the C Implementation
	Summary

	Chapter 12. Parallel Programming with Cython
	Thread-Based Parallelism and the Global Interpreter Lock
	The nogil Function Attribute
	The with nogil Context Manager

	Using prange to Parallelize Loops
	Using prange
	prange Options

	Using prange for Reductions
	Parallel Programming Pointers and Pitfalls
	Summary

	Chapter 13. Cython in Context
	Cython Versus Project X
	Other Ahead-of-Time Compilers for Python
	Python Wrapper Projects
	Just-in-Time Compilers for Python

	Summary

	Index
	About the Author

